Type 1 diabetes affects more than one million individuals, mostly children and young adults, in the United States and many more worldwide. It occurs in genetically predisposed individuals as a consequence of immune-mediated destruction of the pancreatic islet insulin-secreting beta cells. The present treatment for Type 1 diabetes, when implemented properly, can delay or prevent the long-term complications of diabetes (i.e., blindness, renal failure, and amputation). However, proper diabetes treatment is quite difficult to do, expensive, and very invasive to the diabetic patient's lifestyle. Diabetes is also a major factor in health care costs. Is it possible to prevent Type 1 diabetes or to preserve insulin secretion once diabetes has develped? Several immune interventions have been tried in genetically susceptible individuals without success. Other trials have been attempted to intervene early in the course of Type 1 diabetes, in order to preserve beta cell function. These immune interventions using drugs with potential toxicity have failed. Thus, the identification of agents which either prevent the disease or slow its progression would result in major health care cost savings and reduce complications related to diabetes in addition to the huge individual savings in terms of not having the disease. Our long-term goal is to prevent the development of Type 1 diabetes through the use of innovative based therapies designed to prevent the development of the disease in genetically predisposed individuals. The objectives of this application, in pursuit of that goal and in response to the RFA, is completion of the TrialNet protocols and to continue to develop and test innovative interventions to prevent or slow the progression of Type 1 diabetes. One such innovative approach to slow the progression of Type 1 diabetes is our proposed protocol, """"""""Pioglitazone Preserves Insulin Secretion in Type 1 Diabetes."""""""" The proposed work is innovative because it utilitizes a drug that is in wide spread use with low toxicity yet has immunomodulation and anti- inflamatory properties. We have also designed a series of mechanistic studies to examine whether the anti-inflammatory properties of the drug operate by influencing regulatory T-cells.

Public Health Relevance

The significance of this research is that the prevention of type 1 diabetes will save millions of dollars and enormous human suffering. The identification of agents which either prevent the disease or slow its progression would result in major health care cost savings and reduce complications related to diabetes in addition to the huge individual savings in terms of not having the disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01DK085453-04
Application #
8288865
Study Section
Special Emphasis Panel (ZDK1-GRB-R (O1))
Program Officer
Leschek, Ellen W
Project Start
2009-09-30
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
4
Fiscal Year
2012
Total Cost
$492,144
Indirect Cost
$251,507
Name
University of Texas Sw Medical Center Dallas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Bingley, Polly J; Boulware, David C; Krischer, Jeffrey P et al. (2016) The implications of autoantibodies to a single islet antigen in relatives with normal glucose tolerance: development of other autoantibodies and progression to type 1 diabetes. Diabetologia 59:542-9
Moya, Rosita; Robertson, Hannah Kathryn; Payne, Dawson et al. (2016) A pilot study showing associations between frequency of CD4(+) memory cell subsets at diagnosis and duration of partial remission in type 1 diabetes. Clin Immunol 166-167:72-80
Sims, Emily K; Chaudhry, Zunaira; Watkins, Renecia et al. (2016) Elevations in the Fasting Serum Proinsulin-to-C-Peptide Ratio Precede the Onset of Type 1 Diabetes. Diabetes Care 39:1519-26
Cabrera, Susanne M; Wang, Xujing; Chen, Yi-Guang et al. (2016) Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset. Eur J Immunol 46:1030-46
Sosenko, Jay M (2016) Staging the progression to type 1 diabetes with prediagnostic markers. Curr Opin Endocrinol Diabetes Obes 23:297-305
Meah, Farah A; DiMeglio, Linda A; Greenbaum, Carla J et al. (2016) The relationship between BMI and insulin resistance and progression from single to multiple autoantibody positivity and type 1 diabetes among TrialNet Pathway to Prevention participants. Diabetologia 59:1186-95
Xu, Ping; Krischer, Jeffrey P; Type 1 Diabetes TrialNet Study Group (2016) Prognostic Classification Factors Associated With Development of Multiple Autoantibodies, Dysglycemia, and Type 1 Diabetes-A Recursive Partitioning Analysis. Diabetes Care 39:1036-44
Fouts, Alexandra; Pyle, Laura; Yu, Liping et al. (2016) Do Electrochemiluminescence Assays Improve Prediction of Time to Type 1 Diabetes in Autoantibody-Positive TrialNet Subjects? Diabetes Care 39:1738-44
Narsale, Aditi; Moya, Rosita; Robertson, Hannah Kathryn et al. (2016) Data on correlations between T cell subset frequencies and length of partial remission in type 1 diabetes. Data Brief 8:1348-51
Bundy, Brian N; Krischer, Jeffrey P; Type 1 Diabetes TrialNet Study Group (2016) A model-based approach to sample size estimation in recent onset type 1 diabetes. Diabetes Metab Res Rev 32:827-834

Showing the most recent 10 out of 39 publications