We propose to develop a novel technology that allows one to image the spatiotemporal dynamics of the epigenetic functional status of histones within the chromatin in real time, thus enabling 4D-nucleome imaging in living cells at single cell level. The proposed molecular imaging system is developed by using a one-bead-one-compound (OBOC) combinatorial library screen to identify short peptide(s) that activate fluorescence of organic dyes or molecular rotors. Activation of fluorescence is coupled to alterations of their chemical environment including conformational change upon ligand binding and phosphorylation, acetylation, methylation, or ubiquitination of the peptide. These peptides can then be genetically fused to target proteins such as histones to enable functional cellular imaging in living cells in real time. We will adapt our newly developed technology to the epigenetics studies in this application. Hypothesis: The Genetically Encoded Small Illuminant (GESI) technology, comprised of OBOC combinatorial peptide library design and serial screening of huge arrays of immobilized bead (~1 million diversities) under pre-defined conditions, enables identification of short peptide- dye pairs that can be used as genetically encoded illuminants to probe post-translational modification of histones in nucleosomes, temporary and spatially in living cells in real time, thus enabling 4D nucleome imaging. Fluorescently activated GESI sites can be covalently marked for subsequent correlative fluorescent and electron microscopy, and chromatin precipitation via dye/GESI interaction. Impact: GESI peptides can specifically bind to and activate the fluorescence of selected organic dyes. Some GESI peptides will do so only after binding to cellular components such as Ca2+, conformational changes or post-translational modifications (PTMs). Therefore, when expressed in a living cell, they can illuminate the spatiotemporal regulation and modification of proteins of interest. The genetic illuminants are small (1200-1900 daltons), thus can be readily inserted along the sequence of the native proteins without interfering with their physiological functions. Multiplexing is possible and allows us to study cross talks of different histone PMTs and/or recruitments of histone binding proteins in real time.
Specific aims of the proposed project are:
Aim 1. To design and synthesize a series of organic dyes suitable for GESI reporting in the nucleus of living cells.
Aim 2. To develop GESIs to track the spatiotemporal dynamics of subtype of histone H2A (H2AX and H2AZ).
Aim 3. To develop GESIs to newly identify acylations status of N-terminus histone H2A/H3 inside living cells.

Public Health Relevance

We propose to develop a novel Genetically Encoded Small Illuminant (GESI) technology that allows one to image the spatiotemporal dynamics of the epigenetic functional status of histones within the chromatin in real time, thus enabling 4D-nucleome imaging in living cells at single cell level. Short peptides that activate fluorescence of organic dyes will be identified with the enabling OBOC technology and genetically fused to target proteins such as histones to enable functional cellular imaging in living cells in real time

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01EB021230-01
Application #
9003351
Study Section
Special Emphasis Panel (ZRG1-IMST-J (51))
Program Officer
Conroy, Richard
Project Start
2015-09-30
Project End
2018-06-30
Budget Start
2015-09-30
Budget End
2016-06-30
Support Year
1
Fiscal Year
2015
Total Cost
$330,000
Indirect Cost
$119,306
Name
University of California Davis
Department
Biochemistry
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Patriarchi, Tommaso; Shen, Ao; He, Wei et al. (2018) Nanodelivery of a functional membrane receptor to manipulate cellular phenotype. Sci Rep 8:3556
Liu, Ruiwu; Li, Xiaocen; Lam, Kit S (2017) Combinatorial chemistry in drug discovery. Curr Opin Chem Biol 38:117-126
Chen, Chun-Chieh; Xing, Li; Stark, Marie et al. (2016) Chemically activatable viral capsid functionalized for cancer targeting. Nanomedicine (Lond) 11:377-90
Stark, Marie; Cheng, R Holland (2016) Surface modulatable nanocapsids for targeting and tracking toward nanotheranostic delivery. Pharm Pat Anal 5:307-17