Our hypothesis is that synthetic information systems built by integrating relevant mathematical models can provide timely, comprehensive situational awareness and course-of-action analysis that policymakers can and will use to inform their response to infectious disease outbreaks. By synthetic information systems we mean software tools that synthesize diverse, seemingly incommensurate data, models, and causal hypotheses into plausible and justifiable pictures of a specific population and locality that support analysis of demographically and/or geographically targeted interventions. By comprehensive, we mean the tools include constraints and consequences due to behavior, sociology, logistics, and economics as well as health sciences. By provide and inform we mean that, rather than define studies and publish prescriptive policy guidance ourselves, we will create tools that allow analysts and other end users to explore policy and implementation options themselves. We will evaluate this hypothesis by tailoring to epidemiology our synthetic information technologies developed in a variety of decision-informatics contexts. We will extend these methods to address specific lessons learned during our efforts to engage policymakers in the 2009 influenza pandemic.
Specific aims : 1. Create a synthetic information set tailored to infectious disease epidemiology that provides users distributional estimates of the health, social, and financial consequences of outbreaks and interventions in any target subpopulation. This includes designing and implementing a well-defined language for specifying outbreak and intervention scenarios flexibly, sophisticated models and simulations of disease spread, and methods for analyzing the resulting information. 2. Develop integrated dynamical models for individuals'behaviors relevant to the spread of disease and opinions (e.g. prevalence elasticity and sociological theories of complex contagion). 3. Compare the rankings of interventions given by compartmental and individual-based models. The comparison will trace differences in outcomes to specific differences between the models. 4. Conduct a comprehensive investigation of community-based, non-pharmaceutical interventions in an influenza outbreak. In the course of achieving these aims, we will introduce a formal mathematical treatment of multi- perspective, multi-theory, coupled network dynamical processes into epidemiology and epidemiological modeling.

Public Health Relevance

This proposal will develop tools that assist public health decision makers address issues related to surveillance and detection, dynamics of infectious diseases, response strategies, and behavior. They will bridge critical barriers that prevent epidemiological modeling from realizing its tremendous promise to support and coordinate the decision-making stakeholder communities, helping policy-makers save lives and preserve the Nation's economic and social stability in the almost certain event of an infectious disease pandemic. The tools will allow analysts to conduct the analogue of a Phase III study (large-scale randomized controlled study to assess efficacy and safety) of combinations of pharmaceutical and non- pharmaceutical infectious disease outbreak mitigation strategies.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-CBCB-3 (MI))
Program Officer
Sheeley, Douglas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Virginia Polytechnic Institute and State University
Organized Research Units
United States
Zip Code
Blackburn, Jason K; Diamond, Ulrica; Kracalik, Ian T et al. (2014) Household-level spatiotemporal patterns of incidence of cholera, Haiti, 2011. Emerg Infect Dis 20:1516-9
Youssef, Mina; Scoglio, Caterina (2014) Optimal Network-based Intervention in the Presence of Undetectable Viruses. IEEE Commun Lett 18:1347-1350
Quandelacy, Talia M; Viboud, Cecile; Charu, Vivek et al. (2014) Age- and sex-related risk factors for influenza-associated mortality in the United States between 1997-2007. Am J Epidemiol 179:156-67
Lau, Eric H Y; Zheng, Jiandong; Tsang, Tim K et al. (2014) Accuracy of epidemiological inferences based on publicly available information: retrospective comparative analysis of line lists of human cases infected with influenza A(H7N9) in China. BMC Med 12:88
Nsoesie, Elaine O; Leman, Scotland C; Marathe, Madhav V (2014) A Dirichlet process model for classifying and forecasting epidemic curves. BMC Infect Dis 14:12
Bisset, Keith R; Chen, Jiangzhuo; Deodhar, Suruchi et al. (2014) Indemics: An Interactive High-Performance Computing Framework for Data Intensive Epidemic Modeling. ACM Trans Model Comput Simul 24:
Lum, Kristian; Swarup, Samarth; Eubank, Stephen et al. (2014) The contagious nature of imprisonment: an agent-based model to explain racial disparities in incarceration rates. J R Soc Interface 11:20140409
Marathe, Achla; Chen, Jiangzhuo; Eubank, Stephen et al. (2014) Impact of paid sick leave policy: a social planner's perspective. Am J Public Health 104:e1
Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo et al. (2014) An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology. ACM Trans Manag Inf Syst 5:
Yi, Ming; Marathe, Achla (2013) Policy trap and optimal subsidization policy under limited supply of vaccines. PLoS One 8:e67249

Showing the most recent 10 out of 37 publications