Understanding the genetic basis of disease and drug response has the potential to improve therapy and enable early intervention or prevention. However, the main genetic factors remain only partially understood, even while the number of candidate genes is rapidly growing, as a result of genome-wide association studies. Polymorphisms that alter protein sequence are readily detectable, but growing evidence indicates that regulatory polymorphisms are more prevalent, affecting mRNA expression, processing, and translation. Yet, regulatory variants are difficult to detect, and moreover, their functions depend on tissue context and environment, so that a majority remains hidden. The central goal of this proposal is a comprehensive discovery of regulatory polymorphisms in ~200 pharmacotherapeutic candidate genes, followed by molecular studies to understand the underlying mechanisms, and clinical evaluation in drug therapy - the first such systematic study in pharmacogenomics. We have developed a comprehensive approach to the discovery of regulatory polymorphisms, measuring allelic mRNA expression, processing, and translation in relevant human target tissues. This approach has already revealed unexpected and frequent regulatory variants in genes encoding drug metabolizing enzymes and receptors, gaining a powerful link between genotype of proven function and clinical outcomes (examples: DRD2, TPH2, ACE, VKORC1, CETP, and CYP3A4). These results support a critical role for regulatory polymorphisms in drug response. The main focus in this proposal is on drug metabolism genes and impact on pharmacokinetics-pharmacodynamics. In addition, building on other ongoing studies, the project includes genes encoding drug receptors/targets, with focus on CNS disorders (schizophrenia) and cardiovascular diseases (myocardial infarction, lipid metabolism), to be tested in association studies led by experienced clinical scientists. Driven by the motto 'from clinic to laboratory', new genetic studies have been initiated on estrogen and glucocorticoid receptors, the latter to be tested in glucocorticoid-resistant nephrotic syndrome in children. The long-term goal is to develop and validate genetic biomarker panels for optimizing personalized drug therapy.

Public Health Relevance

Advances in genomic sciences have raised expectations that drug therapy can be tailored to the individual patient. However, a large portion of genetic variability remains to be discovered. The 'Expression Genetics in Drug Therapy'program aims to fill an important gap, through a systematic study of gene regulation of drug metabolizing enzymes and receptors. We expect to develop genetic biomarkers for optimizing drug therapy.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-GGG-M (52))
Program Officer
Long, Rochelle M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Schools of Medicine
United States
Zip Code
Wang, Danxin; Sadee, Wolfgang (2016) CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing. Pharmacogenet Genomics 26:40-3
Hartmann, Katherine; Seweryn, Michał; Handleman, Samuel K et al. (2016) Non-linear interactions between candidate genes of myocardial infarction revealed in mRNA expression profiles. BMC Genomics 17:738
Sanford, Jonathan C; Wang, Xinwen; Shi, Jian et al. (2016) Regulatory effects of genomic translocations at the human carboxylesterase-1 (CES1) gene locus. Pharmacogenet Genomics 26:197-207
Pietrzak, Maciej; Papp, Audrey; Curtis, Amanda et al. (2016) Gene expression profiling of brain samples from patients with Lewy body dementia. Biochem Biophys Res Commun 479:875-880
Sweet, K; Sturm, A C; Schmidlen, T et al. (2016) EMR documentation of physician-patient communication following genomic counseling for actionable complex disease and pharmacogenomic results. Clin Genet :
Schmidlen, Tara J; Scheinfeldt, Laura; Zhaoyang, Ruixue et al. (2016) Genetic Knowledge Among Participants in the Coriell Personalized Medicine Collaborative. J Genet Couns 25:385-94
Webb, Amy; Papp, Audrey C; Curtis, Amanda et al. (2015) RNA sequencing of transcriptomes in human brain regions: protein-coding and non-coding RNAs, isoforms and alleles. BMC Genomics 16:990
Handelman, Samuel K; Aaronson, Jacob M; Seweryn, Michal et al. (2015) Cladograms with Path to Event (ClaPTE): a novel algorithm to detect associations between genotypes or phenotypes using phylogenies. Comput Biol Med 58:1-13
Mascarenhas, Roshan; Pietrzak, Maciej; Smith, Ryan M et al. (2015) Allele-Selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-Coding and Noncoding RNAs, and RNA Isoforms. PLoS One 10:e0136798
Wang, Danxin; Papp, Audrey C; Sun, Xiaochun (2015) Functional characterization of CYP2D6 enhancer polymorphisms. Hum Mol Genet 24:1556-62

Showing the most recent 10 out of 66 publications