The electronic medical record (EMR) can be leveraged for high throughput phenotyping of large numbers of patients for genomics research. As part of eMERGE-l, we used EMR-based algorithms to enable genome- wide association studies (GWAS) of several primary and network-wide phenotypes. The present application will leverage the research infrastructure established in eMERGE-l to identify common genetic variants that influence medically important phenotypes. The Mayo eMERGE-ll cohort (n=6916) includes the 3769 eMERGE-l patients and an additional 3147 individuals, the majority (90%) genotyped on the same lllumina 660W platform. We will work with other eMERGE-ll sites to expand and validate the library of electronic phenotyping algorithms to enable GWAS of multiple phenotypes of interest. A major focus of our application is to translate recent GWAS findings to clinical practice.
Our specific aims are:
Specific aim 1. Conduct EMR-based GWAS to identify common genetic variants that influence a) inter-individual variation in cardiorespiratory fitness and response to statin medications and b) susceptibility to venous thromboembolism and colon polyps.
Specific aim 2. Quantify genetic risk of a common 'complex'disease - coronary heart disease (CHD) - and an adverse drug response - statin myopathy. We will develop risk communication tools that convey the clinical and genetic components of risk to both patients and care providers.
Specific aim 3. Develop informatics approaches to incorporate genomic data into the EMR, including links to clinical decision support.
Specific aim 4. Conduct a randomized-clinical trial to investigate how patients respond to genetically informed CHD-risk. We will re-consent 150 eMERGE-l patients without CHD, communicate the results via a genetic counselor, and discuss in detail the implications of the testing relevant to disease risk. The effectiveness of the communication and the patients'comprehension of risk, their hopes and concerns, and planned changes in lifestyle will be assessed by surveys and interviews after the patient-counselor encounter. As part of our ongoing efforts in community consultation, we will establish a community advisory group specific to this project.

Public Health Relevance

The proposed application will leverage the research infrastructure established in eMERGE-l to identify common genetic variants that influence medically important phenotypes. We will develop tools to incorporate genomic information in the EMR. In addition, we will investigate clinical, translational, and ethical aspects of genetic testing for complex diseases and assess the response of patients to genetic testing.

National Institute of Health (NIH)
National Human Genome Research Institute (NHGRI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHG1-HGR-N (M1))
Program Officer
Li, Rongling
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Rasmussen, Luke V; Thompson, Will K; Pacheco, Jennifer A et al. (2014) Design patterns for the development of electronic health record-driven phenotype extraction algorithms. J Biomed Inform 51:280-6
Khaleghi, Mahyar; Isseh, Iyad N; Bailey, Kent R et al. (2014) Family history as a risk factor for peripheral arterial disease. Am J Cardiol 114:928-32
Shameer, Khader; Klee, Eric W; Dalenberg, Angela K et al. (2014) Whole exome sequencing implicates an INO80D mutation in a syndrome of aortic hypoplasia, premature atherosclerosis, and arterial stiffness. Circ Cardiovasc Genet 7:607-14
Jarvik, Gail P; Amendola, Laura M; Berg, Jonathan S et al. (2014) Return of genomic results to research participants: the floor, the ceiling, and the choices in between. Am J Hum Genet 94:818-26
Shameer, Khader; Denny, Joshua C; Ding, Keyue et al. (2014) A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet 133:95-109
Kullo, Iftikhar J; Haddad, Ra'ad; Prows, Cynthia A et al. (2014) Return of results in the genomic medicine projects of the eMERGE network. Front Genet 5:50
Khaleghi, Mahyar; Isseh, Iyad N; Jouni, Hayan et al. (2014) Family history as a risk factor for carotid artery stenosis. Stroke 45:2252-6
Brothers, Kyle B; Lynch, John A; Aufox, Sharon A et al. (2014) Practical guidance on informed consent for pediatric participants in a biorepository. Mayo Clin Proc 89:1471-80
Bielinski, Suzette J; Olson, Janet E; Pathak, Jyotishman et al. (2014) Preemptive genotyping for personalized medicine: design of the right drug, right dose, right time-using genomic data to individualize treatment protocol. Mayo Clin Proc 89:25-33
Rasmussen-Torvik, L J; Stallings, S C; Gordon, A S et al. (2014) Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin Pharmacol Ther 96:482-9

Showing the most recent 10 out of 17 publications