Our groups have common interests in the development of improved techniques for generating pluripotent stem cells, directing their differentiation into relevant tissues, and in disease modeling in two major systems of central interest to the NHLBI-the cardiovascular system and the blood. While the causative genetic lesion has been identified for many conditions, certain inborn and acquired hematologic disorders continue to cause significant morbidity and mortality. The limitations of animal and in vitro models is particularly relevant to the hematopoietic system, where engineering gene defects into mouse strains has failed to phenocopy cardinal features of diseases like Fanconi anemia and Down Syndrome. Human models would offer a relevant system to study these diseases and to develop therapeutics. We have pioneered methods for somatic cell reprogramming to generate mouse and human induced pluripotent stem cells (IPS) and bring considerable experience to the directed differentiation of embryonic stem (ES)/ IPS cells into hematopoietic lineages. We wish to exploit these new """"""""humanized"""""""" research tools to complement our traditional expertise in zebrafish and murine models to study hematopoietic development and disease pathophysiology. In this proposal we plan to create and study human IPS cells for genetic blood diseases that: disrupt genomic stability (Fanconi's anemia and Dyskeratosis congenita), specify aberrant nucleolar or ribosomal proteins (Shwachman-Bodian-Diamond Syndrome and Diamond-Blackfan Anemia), and represent a constitutional'trisomy with prominent hematologic and cardiac anomalies (Down Syndrome). With these IPS cells, we will explore disease phenotypes, pursue strategies for gene repair, and search for novel therapeutics that might ameliorate these conditions. This proposal is part of a collaborative R03 application with Drs Ken Chien and Kit Parker, cardiovascular researchers at the Massachusetts General Hospital, and Doug Melton, a stem cell researcher at Harvard University, and has three specific aims:
Aim #1 : Generate human induced pluripotent stem cells from patients with genetic and acquired disorders of the hematopoietic system.
Aim #2 : Explore the hematopoietic phenotypes of disease-specific IPS cells.
Aim #3 : Investigate methods for gene repair, and pursue chemical and genetic screening to identify novel small molecules and genetic pathways to ameliorate the disease phenotypes in vitro.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01HL100001-05
Application #
8486479
Study Section
Special Emphasis Panel (ZHL1-CSR-J (S1))
Program Officer
Thomas, John
Project Start
2009-09-30
Project End
2016-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
5
Fiscal Year
2013
Total Cost
$1,229,936
Indirect Cost
$523,076
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Pittermann, Erik; Lachmann, Nico; MacLean, Glenn et al. (2017) Gene correction of HAX1 reversed Kostmann disease phenotype in patient-specific induced pluripotent stem cells. Blood Adv 1:903-914
Gansner, John M; Leung, Alexander D; Superdock, Michael et al. (2017) Sorting zebrafish thrombocyte lineage cells with a Cd41 monoclonal antibody enriches hematopoietic stem cell activity. Blood 129:1394-1397
Doulatov, Sergei; Vo, Linda T; Macari, Elizabeth R et al. (2017) Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci Transl Med 9:
Wiley, D S; Redfield, S E; Zon, L I (2017) Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol 138:651-679
Perlin, Julie R; Sporrij, Audrey; Zon, Leonard I (2017) Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. J Mol Med (Berl) 95:809-819
Choudhuri, Avik; Fast, Eva M; Zon, Leonard I (2017) Using Zebrafish to Study Pathways that Regulate Hematopoietic Stem Cell Self-Renewal and Migration. Stem Cell Reports 8:1465-1471
Henninger, Jonathan; Santoso, Buyung; Hans, Stefan et al. (2017) Clonal fate mapping quantifies the number of haematopoietic stem cells that arise during development. Nat Cell Biol 19:17-27
Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum et al. (2017) Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545:432-438
Ablain, J; Zon, L I (2016) Tissue-specific gene targeting using CRISPR/Cas9. Methods Cell Biol 135:189-202
Lu, Yi-Fen; Cahan, Patrick; Ross, Samantha et al. (2016) Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity. Cell Rep 17:3178-3192

Showing the most recent 10 out of 72 publications