Chronic lung, heart and vascular diseases such as idiopathic pulmonary fibrosis (IPF), idiopathic pulmonary arterial hypertension (IPAH), secondary pulmonary hypertension (SPAH), and left ventricular (LV) and right ventricular (RV) heart failure are significant and common causes of mortality and morbidity. Although the molecular mechanisms of individual diseases have been extensively studied, it is unknown whether the molecular phenotypes and mechanisms are shared across disease and organ boundaries. Our overall objective is to use high throughput approaches and the extensive resources of well-characterized tissues in the University of Pittsburgh Cardiovascular Institute, the Simmons Center for Interstitial Lung Diseases and the Vascular Medicine Institute to identify new molecular phenotypes across and within disease and organ boundaries. To identify such phenotypes we will: 1. Identify tissue molecular signatures by analyzing failing and non-failing human RV tissue in IPAH or SPAH;failing and non-failing human LV tissue;human IPF and control lungs;lungs and pulmonary vessels of patients with IPAH and SPAH;and lung, RV, LV and pulmonary vessels from the same patients from our unique warm autopsy program. We will perform mRNA and microRNA expression profiling, validate key patterns and pathways by high throughput qRT PCR and generate cross organ tissue microarrays to perform high-throughput tissue protein validation and localization. 2. Identify biomarkers of disease presence, stage and outcome, within and across organ and disease boundaries, in easily accessible peripheral blood by analyzing peripheral blood from patients with LV and RV failure, IPAH and IPF. We will perform mRNA and microRNA expression profiles and determine expression patterns that predict disease presence, state and outcome within and across organ and disease boundaries. 3. Generate a disease and mechanism relevant transcriptional map in RV and LV failure, IPAH and IPF by performing an integrated analysis of mRNA and microRNA expression patterns as well as clinical data with the use of advanced computational approaches, followed by cell culture and animal model validations of analytic predictions.

Public Health Relevance

Lung, heart, and vascular diseases are common causes of death that frequently occur in the same patients. They are usually diagnosed and treated as distinct entities, but may share common molecular mechanisms that respond to the same treatments. We will identify these common mechanisms by analyzing patterns of gene expression in different diseases and organs, using advanced molecular and computational techniques.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01HL108642-02
Application #
8320195
Study Section
Special Emphasis Panel (ZHL1-CSR-H (M2))
Program Officer
Moore, Timothy M
Project Start
2011-08-15
Project End
2013-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
2
Fiscal Year
2012
Total Cost
$581,739
Indirect Cost
$188,454
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Huleihel, Luai; Ben-Yehudah, Ahmi; Milosevic, Jadranka et al. (2014) Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 306:L534-42
Ramratnam, Mohun; Sharma, Ravi K; D'Auria, Stephen et al. (2014) Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice. J Am Heart Assoc 3:
Montgomery, Rusty L; Yu, Guoying; Latimer, Paul A et al. (2014) MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med 6:1347-56
Hill, Michael R; Simon, Marc A; Valdez-Jasso, Daniela et al. (2014) Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann Biomed Eng 42:2451-65
Kelley, Eric E; Baust, Jeff; Bonacci, Gustavo et al. (2014) Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity. Cardiovasc Res 101:352-63
Huang, Long Shuang; Mathew, Biji; Li, Haiquan et al. (2014) The mitochondrial cardiolipin remodeling enzyme lysocardiolipin acyltransferase is a novel target in pulmonary fibrosis. Am J Respir Crit Care Med 189:1402-15
Su, Ming; Wang, Jizheng; Kang, Lianming et al. (2014) Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy. Int J Mol Sci 15:9302-13
Sharifi-Sanjani, Maryam; Shoushtari, Ali Hakim; Quiroz, Marisol et al. (2014) Cardiac CD47 drives left ventricular heart failure through Ca2+-CaMKII-regulated induction of HDAC3. J Am Heart Assoc 3:e000670
Kundu, Shinjini; Gu, Suicheng; Leader, Joseph K et al. (2013) Assessment of lung volume collapsibility in chronic obstructive lung disease patients using CT. Eur Radiol 23:1564-72
Schulz, Marcel H; Pandit, Kusum V; Lino Cardenas, Christian L et al. (2013) Reconstructing dynamic microRNA-regulated interaction networks. Proc Natl Acad Sci U S A 110:15686-91

Showing the most recent 10 out of 14 publications