Major Depressive Disorder (MDD) is associated with structural, functional, and neurochemical alterations in key interrelated brain circuits involved in emotion, reward, and executive functioning. Current models of its etiology, including genetic expression, gene environment interactions, the monoamine hypothesis, and neurogenesis guided our choice of biomarkers. We propose to use biomarkers from several levels of organization that address one or more of these models and examine their ability to predict treatment remission. At the genetic level, we will examine epigenetic measures and the transcriptome. At the molecular level, the utility of measures of 5HT1a neuroreceptor binding using Position Emission Tomography and proteomics will be investigated. At the anatomical level, we will examine white matter tract integrity and regional decreases in cortical thickness. Functional assessments include electroencephalography, loudness dependent auditory evoked potentials, and neurocognitive performance. Clinical features will be studied as well, e.g. presence of anxious depression, family history of depression, and others. While receiving supportive clinical management, 300 patients will be observed medication free for 3 weeks, to diminish the influence of placebo response and minimize effects on biosignature assays. Those still meeting criteria after the 3 weeks will receive all aforementioned assessments. Patients then will be randomized in a doublemasked fashion to bupropion or escitalopram, two of the most commonly prescribed treatments for depression, with putatively distinct mechanisms of action. Treatment will be for 12-14 weeks. Treatment outcome will be remission, measures of symptomatic improvement, and assessment of adverse events. Non-remitters will be crossed over. Outcomes will be measured with both traditional and contemporary clinical assessments. Patients will be followed for 6 months after randomization to assess maintenance of response and remission. We will also use a comprehensive analysis algorithm, using novel statistical techniques for high dimensional data to develop an optimal predictive model of treatment outcome that includes all data recorded from all modalities. The statistical team will develop new strategies to address the complex data set to be generated by this study. The resulting optimized algorithm for predicting remission can serve as the basis for a new study intended to validate this tool for personalized treatment of depression. Data and biological materials collected in this project would become part of a repository, open to qualified individuals for additional analysis.

Public Health Relevance

This application is in response to RFA MH-10-040: Biosignature Discovery for Personalized Treatment in Depression.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01MH092250-02
Application #
8152265
Study Section
Special Emphasis Panel (ZMH1-ERB-F (09))
Program Officer
Hillefors, MI
Project Start
2010-09-30
Project End
2014-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2011
Total Cost
$1,807,205
Indirect Cost
Name
Columbia University (N.Y.)
Department
Psychiatry
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Delaparte, Lauren; Yeh, Fang-Cheng; Adams, Phil et al. (2017) A comparison of structural connectivity in anxious depression versus non-anxious depression. J Psychiatr Res 89:38-47
Petkova, Eva; Ogden, R Todd; Tarpey, Thaddeus et al. (2017) Statistical Analysis Plan for Stage 1 EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care) Study. Contemp Clin Trials Commun 6:22-30
Fournier, Jay C; Chase, Henry W; Greenberg, Tsafrir et al. (2017) Neuroticism and Individual Differences in Neural Function in Unmedicated Major Depression: Findings from the EMBARC Study. Biol Psychiatry Cogn Neurosci Neuroimaging 2:138-148
Tenke, Craig E; Kayser, Jürgen; Pechtel, Pia et al. (2017) Demonstrating test-retest reliability of electrophysiological measures for healthy adults in a multisite study of biomarkers of antidepressant treatment response. Psychophysiology 54:34-50
Jiang, Bei; Petkova, Eva; Tarpey, Thaddeus et al. (2017) LATENT CLASS MODELING USING MATRIX COVARIATES WITH APPLICATION TO IDENTIFYING EARLY PLACEBO RESPONDERS BASED ON EEG SIGNALS. Ann Appl Stat 11:1513-1536
Friedman, Lee; Nixon, Mark S; Komogortsev, Oleg V (2017) Method to assess the temporal persistence of potential biometric features: Application to oculomotor, gait, face and brain structure databases. PLoS One 12:e0178501
Perlman, Greg; Bartlett, Elizabeth; DeLorenzo, Christine et al. (2017) Cortical thickness is not associated with current depression in a clinical treatment study. Hum Brain Mapp 38:4370-4385
Olvet, Doreen M; Delaparte, Lauren; Yeh, Fang-Cheng et al. (2016) A COMPREHENSIVE EXAMINATION OF WHITE MATTER TRACTS AND CONNECTOMETRY IN MAJOR DEPRESSIVE DISORDER. Depress Anxiety 33:56-65
Webb, Christian A; Dillon, Daniel G; Pechtel, Pia et al. (2016) Neural Correlates of Three Promising Endophenotypes of Depression: Evidence from the EMBARC Study. Neuropsychopharmacology 41:454-63
Kayser, Jürgen; Tenke, Craig E (2015) On the benefits of using surface Laplacian (current source density) methodology in electrophysiology. Int J Psychophysiol 97:171-3

Showing the most recent 10 out of 20 publications