Neurons communicate information through fluctuations in the electrical potentials across their cellular membranes. Whole-cell patch clamping, the gold standard technique for measuring these fluctuations, is something of an art form, requiring great skill to perform on only a few cells per day. Thus, it has been primarily limited to in vitro experiments, a few in vivo experiments, and very limited applications in the awake brain. Dr. Forest (and collaborator Dr. Boyden at MIT) developed a robot that automatically performs patch clamping in the living brains of mice by algorithmically detecting cells through analysis of a temporal sequence of electrode impedance changes. Using it, they have demonstrated good yield, throughput, and quality of recording in mouse cortex and hippocampus. With this 'autopatching'robot enabling routine access to electrical and molecular properties of neurons, systematic and scalable in vivo experiments as well as fundamentally new kinds of single-cell analyses have become possible. In the past 12 months, the team has installed 15 autopatchers in academic research laboratories, garnered worldwide media coverage, and led to Dr. Forest's and Dr. Boyden's invitations to President Barack Obama's announcement of the BRAIN Initiative. There are currently no published experiments demonstrating in vivo intracellular recordings of two or more neurons that are synaptically connected. We propose to utilize the autopatcher to target anatomically well-studied sub-circuits to significantly increase the odds of identifying synaptically connected pairs. Specifically, we wil utilize the thalamocortical circuit in the mouse vibrissa/whisker pathway as a model experimental system, where there is a substantial convergence of projections from the thalamus to the input layer in the somatosensory (tactile) cortex. The Stanley Laboratory has extensive experience with stimulation and electrophysiological recordings in this circuit, and is one of only a few laboratories that has successfully recorded from synaptically connected pairs of neurons using extracellular techniques. Thus we aim to demonstrate and characterize the first simultaneous intracellular recording of a functional circuit in the anesthetized and awake living mouse brain to reveal its neural network dynamics. In this 36 month program, the labs of Prof. Stanley and Forest, supported by two postdoctoral researchers, two graduate research assistants, a research engineer and five undergraduates, with assistance from ten graduate students working on related projects, will develop single (Aim 1) and dual (Aim 2,3) autopatching robots for the anesthetized and awake brain. Success will allow, for the first time, quantification of synaptic efficacy in the living brain, crucial for understanding normal and pathological function. Just as molecular biology has greatly benefited from the revolution in in vitro automation, we believe that neuroscience will greatly benefit from the revolution in in vivo automation that we have launched, and here propose to extend.

Public Health Relevance

We will develop powerful, easy-to-use tools that enable intracellular recording and stimulation of functional circuits in the living brain. There are curretly no published experiments demonstrating such in vivo intracellular recordings of two or more neurons that are synaptically connected. This application represents a significant step toward developing and validating novel tools to facilitate the detailed analysis of complex circuits (a BRAIN Initiative high priority research area), thus contributing to the progression of neuroscience from observation to causation.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1-ERB-L (04))
Program Officer
Freund, Michelle
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Georgia Institute of Technology
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Lee, John; Kolb, Ilya; Forest, Craig R et al. (2018) Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy. IEEE Trans Image Process 27:1847-1861
Lee, Timothy J; Lewallen, Colby F; Bumbarger, Daniel J et al. (2018) Transport and trapping of nanosheets via hydrodynamic forces and curvature-induced capillary quadrupolar interactions. J Colloid Interface Sci 531:352-359
Kodandaramaiah, Suhasa B; Flores, Francisco J; Holst, Gregory L et al. (2018) Multi-neuron intracellular recording in vivo via interacting autopatching robots. Elife 7:
Morgan, M Thomas; Yang, Bo; Harankhedkar, Shefali et al. (2018) Stabilization of Aliphatic Phosphines by Auxiliary Phosphine Sulfides Offers Zeptomolar Affinity and Unprecedented Selectivity for Probing Biological CuI. Angew Chem Int Ed Engl 57:9711-9715
Kolb, Ilya; Talei Franzesi, Giovanni; Wang, Michael et al. (2018) Evidence for Long-Timescale Patterns of Synaptic Inputs in CA1 of Awake Behaving Mice. J Neurosci 38:1821-1834
Stoy, W A; Kolb, I; Holst, G L et al. (2017) Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo. J Neurophysiol 118:1141-1150
Borden, Peter Y; Ortiz, Alex D; Waiblinger, Christian et al. (2017) Genetically expressed voltage sensor ArcLight for imaging large scale cortical activity in the anesthetized and awake mouse. Neurophotonics 4:031212
Kodandaramaiah, Suhasa B; Holst, Gregory L; Wickersham, Ian R et al. (2016) Assembly and operation of the autopatcher for automated intracellular neural recording in vivo. Nat Protoc 11:634-54
Wu ???, Qiuyu; Kolb, Ilya; Callahan, Brendan M et al. (2016) Integration of autopatching with automated pipette and cell detection in vitro. J Neurophysiol 116:1564-1578
Stockslager, Max A; Samuels, Brian C; Allingham, R Rand et al. (2016) System for Rapid, Precise Modulation of Intraocular Pressure, toward Minimally-Invasive In Vivo Measurement of Intracranial Pressure. PLoS One 11:e0147020

Showing the most recent 10 out of 19 publications