Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy, estimated to account for up to 50% of all deaths in this population and up to 17% of deaths in all patients with epilepsy. There is a surprisingly common lack of awareness among patients and physicians of this increased risk of sudden death. In a recent survey, only 56% of Canadian pediatricians who treat patients with epilepsy knew their patients were at increased risk for sudden death and only 33% of these physicians knew the term SUDEP. There is controversy regarding whether cardiac failure or respiratory arrest is more important as the primary cause of death, but cardiac and respiratory data is rarely collected simultaneously from human cases of SUDEP or from mouse models. For example, in the more than 20 documented cases of SUDEP that occurred while the patient was undergoing EMU monitoring, none of these patients had measurements of ventilation or even blood oxygenation. Effective preventive strategies in high-risk epileptic patients will rely on defining the mechanisms that lead from seizures to death. Our preliminary data suggest that respiratory depression is the primary cause of death in some cases of SUDEP and that patients with Dravet syndrome have previously uncharacterized breathing abnormalities in the peri-ictal period. Furthermore, our data has indicated there is an anatomical pathway that inhibits ventilation, which extends from the amygdala and anterior temporal lobe to medullary nuclei that control breathing. However, it is unclear how this circuit is connected and the identities of the neurons involved.
In Aim 1, we will characterize peri-ictal cardiorespiratory control in human patients with Dravet syndrome as well as mouse models of this pathology.
In Aim 2, we will define the anatomical pathway from the amygdala to the brainstem that inhibits the cardiovascular and respiratory control networks during seizures. Finally, in Aim 3 we will determine the identity of brainstem neurons that receive inputs from the amygdala and inhibit breathing and consciousness during seizures. This work will identify an anatomical pathway by which cortical seizures can invade the midbrain and brainstem and cause depressed cardiorespiratory function and arousal. Our findings have the potential to characterize key components of this circuit and may identify biomarkers that can be used to develop effective screening strategies. Better understanding mechanisms that underlie SUDEP will allow future development of preventative treatments that may decrease SUDEP risk.

Public Health Relevance

SUDEP is a major cause of death in patients with epilepsy, by some estimates accounting for up to 50% of mortality in patients with chronic refractory epilepsy. Cardiac arrhythmias and respiratory depression are both proposed to be mechanisms that lead to SUDEP, however respiratory mechanisms have not been studied as extensively as cardiac causes. This proposal seeks: 1) to investigate the mechanisms underlying hypoventilation and post-ictal coma;2) to identify biomarkers;3) to aid forensic diagnosis, and;4) to discover preventive interventions to decrease SUDEP.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-B (40))
Program Officer
Fureman, Brandy E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Schools of Medicine
Iowa City
United States
Zip Code
Zhan, Qiong; Buchanan, Gordon F; Motelow, Joshua E et al. (2016) Impaired Serotonergic Brainstem Function during and after Seizures. J Neurosci 36:2711-22
Richerson, George B; Boison, Detlev; Faingold, Carl L et al. (2016) From unwitnessed fatality to witnessed rescue: Pharmacologic intervention in sudden unexpected death in epilepsy. Epilepsia 57 Suppl 1:35-45
Cerpa, Veronica J; Wu, Yuanming; Bravo, Eduardo et al. (2016) Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development. Neuroscience :
Buchanan, Gordon F; Richerson, George B (2016) Epilepsy: A dietary supplement for SUDEP prevention? Nat Rev Neurol 12:495-6
Corcoran, Andrea E; Richerson, George B; Harris, Michael B (2015) Functional link between the hypocretin and serotonin systems in the neural control of breathing and central chemosensitivity. J Neurophysiol 114:381-9
Cerpa, Verónica J; Aylwin, María de la Luz O; Beltrán-Castillo, Sebastián et al. (2015) The Alteration of Neonatal Raphe Neurons by Prenatal-Perinatal Nicotine. Meaning for Sudden Infant Death Syndrome. Am J Respir Cell Mol Biol 53:489-99
Dlouhy, Brian J; Gehlbach, Brian K; Kreple, Collin J et al. (2015) Breathing Inhibited When Seizures Spread to the Amygdala and upon Amygdala Stimulation. J Neurosci 35:10281-9
Lhatoo, Samden; Noebels, Jeffrey; Whittemore, Vicky et al. (2015) Sudden unexpected death in epilepsy: Identifying risk and preventing mortality. Epilepsia 56:1700-6
Massey, Cory A; Iceman, Kimberly E; Johansen, Sara L et al. (2015) Isoflurane abolishes spontaneous firing of serotonin neurons and masks their pH/COâ‚‚ chemosensitivity. J Neurophysiol 113:2879-88
Murray, Nicholas M; Buchanan, Gordon F; Richerson, George B (2015) Insomnia Caused by Serotonin Depletion is Due to Hypothermia. Sleep 38:1985-93

Showing the most recent 10 out of 20 publications