The use of genetically encoded fluorescent activity probes represent the most advanced method to monitor the electrical activity of networks of neurons without using electrodes. While genetically encoded calcium indicators have been evolved to produce robust signals in a variety of different neuronal preparations, fluorescent probes of membrane potential have not been well evolved. Current voltage probes, while finally in expanded use, will need considerable improvement if the goal of recording the activity of a large number of neurons simultaneously in vivo is to be achieved. The goal of this project is to discover protein-based fluorescent voltage probes with signal to noise characteristics that allow routine optical recording of action potentials from single cortical neurons in vivo. We are seeking probes with significantly improved signal to noise characteristics, red-shifted fluorescence spectra, faster on and off rates and better plasma membrane expression. This project brings together leading genetic probe scientists to: design new probe scaffolds, robotically screen large incrementally modified libraries of probes, identify probes with improved response properties, then validate these new probes under standardized experimental conditions in a range of 'real world'neuronal preparations with increasing levels of complexity. Finally, we will make all probe reagents (i.e. plasmid DNA, AAV particles, transgenic flies, etc.) as well as supporting validation data readily available to the research community.

Public Health Relevance

The current proposal seeks to create a new way to study brain activity. Microelectrodes are currently the only method to record the electrical activity in the mammalian brain. We are proposing to search for new probes that are encoded by DNA that make neurons fluorescent. This fluorescence is altered by the electrical activity of the cell it is expressed in. This will allow a researcher to use only a camera and fluorescence microscope to 'image'electrical activity in neurons. Using modern molecular methods this fluorescent probe can be targeted to virtually any cell type in the brain allowing one to study how cells are interconnected to produce behavior. The study of neuronal network activity that produces behavior is the centerpiece of President Obama's BRAIN initiative.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01NS090565-01
Application #
8827112
Study Section
Special Emphasis Panel (ZNS1-SRB-G (77))
Program Officer
Talley, Edmund M
Project Start
2014-09-30
Project End
2017-08-31
Budget Start
2014-09-30
Budget End
2015-08-31
Support Year
1
Fiscal Year
2014
Total Cost
$525,001
Indirect Cost
$205,456
Name
John B. Pierce Laboratory, Inc.
Department
Type
DUNS #
010139210
City
New Haven
State
CT
Country
United States
Zip Code
06519