We have strengthened our revised proposal in several major ways. First, we have expanded our genetic sequencing of the extreme phenotype of centenarians (with appropriate controls) to include the entire human exome, in addition to regulatory/conserved regions of more genes (~1,000) selected by our Scientific Advisory Committee, based on work from model systems and previous genome-wide association studies (GWAS) for longevity. Second, instead of creating a Gene Function Core, we will analyze and characterize in silico the variants we discover in order to identify the best candidates for subsequent functional studies. Third, after careful consideration of reviewers'comments and concerns about the proposed in vitro work, we decided to defer several proposals for in vitro studies of specific pathways-insulin signaling, TOR, mitochondria and energy-sensing, micro- and regulatory RNA, and proteostasis?until we have identified the best candidates for functional studies. In addition, we have modified the remaining projects and cores in response to the previous reviews. We are excited that the next phase of the Longevity Consortium (LC) will have a substantial impact on research on aging and chronic degenerative diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program--Cooperative Agreements (U19)
Project #
2U19AG023122-06A1
Application #
8214205
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5 (03))
Program Officer
Rossi, Winifred K
Project Start
2003-12-01
Project End
2016-08-31
Budget Start
2011-09-30
Budget End
2012-08-31
Support Year
6
Fiscal Year
2011
Total Cost
$1,988,112
Indirect Cost
Name
California Pacific Medical Center Research Institute
Department
Type
DUNS #
071882724
City
San Francisco
State
CA
Country
United States
Zip Code
94107
Brown, Abigail K; Webb, Ashley E (2018) Regulation of FOXO Factors in Mammalian Cells. Curr Top Dev Biol 127:165-192
Zeng, Yi; Nie, Chao; Min, Junxia et al. (2018) Sex Differences in Genetic Associations With Longevity. JAMA Netw Open 1:
Schork, Nicholas J; Raghavachari, Nalini; Workshop Speakers and Participants (2018) Report: NIA workshop on translating genetic variants associated with longevity into drug targets. Geroscience 40:523-538
Ding, Kuan-Fu; Finlay, Darren; Yin, Hongwei et al. (2018) Network Rewiring in Cancer: Applications to Melanoma Cell Lines and the Cancer Genome Atlas Patients. Front Genet 9:228
Ding, Kuan-Fu; Petricoin, Emanuel F; Finlay, Darren et al. (2018) Nonlinear mixed effects dose response modeling in high throughput drug screens: application to melanoma cell line analysis. Oncotarget 9:5044-5057
Sebastiani, Paola; Bae, Harold; Gurinovich, Anastasia et al. (2017) Limitations and risks of meta-analyses of longevity studies. Mech Ageing Dev 165:139-146
Sebastiani, Paola; Thyagarajan, Bharat; Sun, Fangui et al. (2017) Biomarker signatures of aging. Aging Cell 16:329-338
Schork, N J; Nazor, K (2017) Integrated Genomic Medicine: A Paradigm for Rare Diseases and Beyond. Adv Genet 97:81-113
Peng, Qian; Schork, Nicholas J; Wilhelmsen, Kirk C et al. (2017) Whole genome sequence association and ancestry-informed polygenic profile of EEG alpha in a Native American population. Am J Med Genet B Neuropsychiatr Genet 174:435-450
Sebastiani, Paola; Gurinovich, Anastasia; Bae, Harold et al. (2017) Four Genome-Wide Association Studies Identify New Extreme Longevity Variants. J Gerontol A Biol Sci Med Sci 72:1453-1464

Showing the most recent 10 out of 202 publications