Transplantation offers the promise of life saving and health restoring therapy for hundreds of thousands of patients suffering from end-stage organ failure. Outstanding short-term outcomes have been achieved through the development of multi-drug life-long continuous immunosuppressive regimens. Despite these achievements, significant challenges remain that compromise the long-term outcomes and limit the application of transplantation. Premature graft loss and death remain as stubborn adversaries as evidenced by the inexorable and stagnant graft and patient annual attrition rates that plague our patients. Current thinking holds that CNI-toxicity and donor-specific antibodies are predominant drivers of kidney graft failure, whereas the principle causes of premature death are cardiovascular (CV) disease, infection, and malignancy. Until recently, virtually all transplant regimens relied on calcineurin-inhibitors as their cornerstone immunosuppressive agent. The approval of belatacept, a second generation CD28 pathway inhibitor, provides an alternative which addresses some of the limitations inherent in CNI-based immunosuppression and provides a long-awaited tool in the quest for transplantation tolerance. Belatacept avoids CNI-induced nephrotoxicity, is associated with very low de novo DSA rates, and improves the CV risk profile. Unfortunately, barriers to wide-scale application and improving long-term results persist. As foreshadowed by our early studies in mice and NHP identifying costimulation blockade-resistant rejection, the rates and grades of acute cellular rejection are higher with belatacept than CNI. In addition, infection and immune compromise-related mortality will almost certainly continue because like its predecessors, belatacept-based immunosuppression in its current form is continuous and life-long. Furthermore, humoral rejection is emerging as a major cause of late-graft failure, and adequate non-human primate models to address the problem of B cell alloimmunity are urgently needed. The central goal of our research program and this application is to develop clinically applicable approaches to address near-term needs and ultimately to develop broadly applicable tolerance strategies for use in clinical transplantation. This goal will be accomplished via four interrelated projects and two supporting cores.

Public Health Relevance

Transplantation is a cure for many end stage organ diseases, but the immunosuppression required to prevent graft rejection carries with it several side effects that can impact patient health. This program seeks to use pre-clinical models to test new therapeutics for use in transplantation, with the goals of minimizing graft rejection, preserving protective immunity, and maximizing patient health.

National Institute of Health (NIH)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Kraemer, Kristy A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Medicine
United States
Zip Code
Singh, K; Stempora, L; Harvey, R D et al. (2014) Superiority of rapamycin over tacrolimus in preserving nonhuman primate Treg half-life and phenotype after adoptive transfer. Am J Transplant 14:2691-703
Sullivan, Jeremy A; Adams, Andrew B; Burlingham, William J (2014) The emerging role of TH17 cells in organ transplantation. Transplantation 97:483-9
Pathiraja, Vimukthi; Matar, Abraham J; Gusha, Ashley et al. (2013) Leukapheresis protocol for nonhuman primates weighing less than 10 kg. J Am Assoc Lab Anim Sci 52:70-7
Huang, Alex Y; Haining, W Nicholas; Barkauskas, Deborah S et al. (2013) Viewing transplantation immunology through today's lens: new models, new imaging, and new insights. Biol Blood Marrow Transplant 19:S44-51
Lowe, M C; Badell, I R; Turner, A P et al. (2013) Belatacept and sirolimus prolong nonhuman primate islet allograft survival: adverse consequences of concomitant alefacept therapy. Am J Transplant 13:312-9
Page, Eugenia K; Courtney, Cynthia L; Sharma, Prachi et al. (2013) Post-transplant lymphoproliferative disorder associated with immunosuppressive therapy for renal transplantation in rhesus macaques (Macaca mulatta). Exp Toxicol Pathol 65:1019-24
Badell, I R; Russell, M C; Cardona, K et al. (2012) CTLA4Ig prevents alloantibody formation following nonhuman primate islet transplantation using the CD40-specific antibody 3A8. Am J Transplant 12:1918-23
Badell, I R; Thompson, P W; Turner, A P et al. (2012) Nondepleting anti-CD40-based therapy prolongs allograft survival in nonhuman primates. Am J Transplant 12:126-35
Johnson, Z P; Eady, R D; Ahmad, S F et al. (2012) Immunogenetic Management Software: a new tool for visualization and analysis of complex immunogenetic datasets. Immunogenetics 64:329-36
Page, A; Srinivasan, S; Singh, K et al. (2012) CD40 blockade combines with CTLA4Ig and sirolimus to produce mixed chimerism in an MHC-defined rhesus macaque transplant model. Am J Transplant 12:115-25

Showing the most recent 10 out of 29 publications