PILOT PROJECTS CORE for Influenza Immunity: Protective Mechanisms against a Pandemic Respiratory Virus. The purpose of the Pilot Projects Core is to support investigators new to human immunology studies or with novel ideas or technologies to be applied to human immunological questions. These small grants will provide funds to obtain pilot data as a foundation for subsequent application for extramural funding.
The specific aims of this Core are: l.A.To solicit proposals on an annual basis in the Stanford research community for pilot projects related to human immunology. l.B.To review these proposals and to award seed grants for 1-3 projects/year. 1.C.To provide infrastructure support for the Pilot Projects.during the award period._ l.D.To monitor the progress of the Pilot Projects on a quarterly basis and to monitor the overall success of the program by tracking publications and extramural funding obtained on the basis of Pilot Project support.

Public Health Relevance

Annual influenza epidemics are a serious public health problem;influenza pandemics are a major threat. It is important to provide resources such as seed funds for Pilot Projects to support new research ideas or technologies that could be developed to address critical questions in human immunology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057229-10
Application #
8508802
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
2013-04-01
Project End
2014-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$131,174
Indirect Cost
$37,174
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Haynes, Winston A; Vallania, Francesco; Liu, Charles et al. (2016) EMPOWERING MULTI-COHORT GENE EXPRESSION ANALYSIS TO INCREASE REPRODUCIBILITY. Pac Symp Biocomput 22:144-153
Fragiadakis, Gabriela K; Baca, Quentin J; Gherardini, Pier Federico et al. (2016) Mapping the Fetomaternal Peripheral Immune System at Term Pregnancy. J Immunol 197:4482-4492
Sharon, Eilon; Sibener, Leah V; Battle, Alexis et al. (2016) Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat Genet 48:995-1002
Adams, Jarrett J; Narayanan, Samanthi; Birnbaum, Michael E et al. (2016) Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nat Immunol 17:87-94
Rubelt, Florian; Bolen, Christopher R; McGuire, Helen M et al. (2016) Individual heritable differences result in unique cell lymphocyte receptor repertoires of naïve and antigen-experienced cells. Nat Commun 7:11112
Angst, Martin S; Fragiadakis, Gabriela K; Gaudillière, Brice et al. (2016) In Reply. Anesthesiology 124:1414-5
Holmes, Tyson H; He, Xiao-Song (2016) Human immunophenotyping via low-variance, low-bias, interpretive regression modeling of small, wide data sets: Application to aging and immune response to influenza vaccination. J Immunol Methods 437:1-12
Frei, Andreas P; Bava, Felice-Alessio; Zunder, Eli R et al. (2016) Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat Methods 13:269-75
Sweeney, Timothy E; Braviak, Lindsay; Tato, Cristina M et al. (2016) Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med 4:213-24
Kovats, S; Turner, S; Simmons, A et al. (2016) West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol 186:214-226

Showing the most recent 10 out of 158 publications