In this project we propose to follow up on a number of observations that we have made concerning CD4+ T cells and how they may contribute to immune competence, especially in young children. Recently we found that healthy adults have an abundance of memory phenotype CD4+ T cells (which we refer to as TMPS) that are specific for viral antigens to which they have never been exposed. This is in contrast to newborns, where we find a similar frequency of specific T cells, but almost entirely naive in phenotype. These TMPS in adults have many of the expected characteristics of authentic memory T cells, and we hypothesize that they are the consequence of microbial exposure to cross-reactive T cell receptors (TCR), confer some degree of immunological protection, and contribute to immunodominance and a fully capable immune system.
In Aim 1, we will characterize the time course with which specific TMRS appear in infants and children and also analyze whether their rise is continuous, or spikes with major vaccinations, acquisition of a microbiome or disease exposure. For the purposes of comparison to children recruited here, we will also have age and gender matched samples from our collaborators in Bangladesh.
In Aim 2, we will perform a critical test of whether and to what degree cells of this type participate in a vaccine response, by first analyzing the TCR repertoires of naive and TMRS specific for the same Hepatitis B antigens and then seeing which TCRs in the same subject are expanded in the effector and then memory T pools after challenge with the vaccine. We will also use this same procedure to analyze the response to unique flu strain epitopes. Another effort will be to find original cross-reactive epitopes for selected TMRS using unique peptide-MHC display libraries, which we have constructed. Lastly, in Aim 3, we wish to follow up on our studies of flu specific effector and memory CD+ T cells, where we see evidence of an influence on both antibody responses and specific CD8+ T cell levels. The most prominent of these T cells responding to flu vaccination have some of the characteristics of Follicular helper T cells and may be driving the responses of the other cells. Using the novel ex vivo infection system described in the Greenberg project (P2) will afford us a way to directly test this hypothesis.

Public Health Relevance

CD4+ T lymphocytes are known to be very important for most immune responses, but their precise role in the context of influenza vaccination and protection is not well understood. Here we utilize novel technologies and approaches to seek a better understanding of how this class of lymphocytes, and their specific subtypes of memory and effector cells, develops and mediates immunity in children and adults.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057229-14
Application #
9250066
Study Section
Special Emphasis Panel (ZAI1-LAR-I)
Project Start
2003-09-30
Project End
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
14
Fiscal Year
2017
Total Cost
$304,384
Indirect Cost
$114,736
Name
Stanford University
Department
Type
Domestic Higher Education
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Cheung, Peggie; Vallania, Francesco; Warsinske, Hayley C et al. (2018) Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell 173:1385-1397.e14
Mamedov, Murad R; Scholzen, Anja; Nair, Ramesh V et al. (2018) A Macrophage Colony-Stimulating-Factor-Producing ?? T Cell Subset Prevents Malarial Parasitemic Recurrence. Immunity 48:350-363.e7
Kooreman, Nigel G; Kim, Youngkyun; de Almeida, Patricia E et al. (2018) Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo. Cell Stem Cell 22:501-513.e7
Haynes, Winston A; Tomczak, Aurelie; Khatri, Purvesh (2018) Gene annotation bias impedes biomedical research. Sci Rep 8:1362
Sweeney, Timothy E; Thomas, Neal J; Howrylak, Judie A et al. (2018) Multicohort Analysis of Whole-Blood Gene Expression Data Does Not Form a Robust Diagnostic for Acute Respiratory Distress Syndrome. Crit Care Med 46:244-251
Kronstad, Lisa M; Seiler, Christof; Vergara, Rosemary et al. (2018) Differential Induction of IFN-? and Modulation of CD112 and CD54 Expression Govern the Magnitude of NK Cell IFN-? Response to Influenza A Viruses. J Immunol 201:2117-2131
Wilk, Aaron J; Blish, Catherine A (2018) Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 103:629-641
Sweeney, Timothy E; Wynn, James L; Cernada, María et al. (2018) Validation of the Sepsis MetaScore for Diagnosis of Neonatal Sepsis. J Pediatric Infect Dis Soc 7:129-135
Bukhari, Syed Ahmad Chan; O'Connor, Martin J; Martínez-Romero, Marcos et al. (2018) The CAIRR Pipeline for Submitting Standards-Compliant B and T Cell Receptor Repertoire Sequencing Studies to the National Center for Biotechnology Information Repositories. Front Immunol 9:1877
Azad, Tej D; Donato, Michele; Heylen, Line et al. (2018) Inflammatory macrophage-associated 3-gene signature predicts subclinical allograft injury and graft survival. JCI Insight 3:

Showing the most recent 10 out of 249 publications