Flow cytometry has become an essential tool for investigators requiring high throughput analysis of single cells. Assessment of the phenotype and function of human T cells during and after a viral infection is a critical element to all CTRHIB projects (Research Projects 1-4 and Technology Development Project 1). The CTRHIB Flow Cytometry Core will provide flow cytometry services to support human immunology research by CTRHIB investigators. The Flow Cytometry Core will provide CTRHIB investigators with access to a state-of-the-art FACS ARIA flow cytometer to permit analysis and sorting of cells. Currently we are able to use 11 different flurochromes on a single sample thus allowing assessment of multiple parameters on a single cell. The core will provide training for scientists and laboratory staff to operate the FACS ARIA for data collection and analysis. It will also provide guidance in design and analysis of flow cytometry experiments, including techniques for cell staining, cell sorting and selection of antibody panels.

Public Health Relevance

Polychromatic flow cytometry allows for detailed measurements even with small sample sizes to assess a myriad of T cell functions. All four research projects, the technology development project and the clinical core will heavily depend on the use of the Flow Cytometry Core for the assessment of T cell phenotype and function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057319-10
Application #
8452148
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$183,500
Indirect Cost
$68,780
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Mathew, Anuja (2017) Humanized mouse models to study human cell-mediated and humoral responses to dengue virus. Curr Opin Virol 25:76-80
Ramirez, Alejandro; Co, Mary; Mathew, Anuja (2016) CpG Improves Influenza Vaccine Efficacy in Young Adult but Not Aged Mice. PLoS One 11:e0150425
Townsley, E; O'Connor, G; Cosgrove, C et al. (2016) Interaction of a dengue virus NS1-derived peptide with the inhibitory receptor KIR3DL1 on natural killer cells. Clin Exp Immunol 183:419-30
Woda, Marcia; Friberg, Heather; Currier, Jeffrey R et al. (2016) Dynamics of Dengue Virus (DENV)-Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions. J Infect Dis 214:1001-9
Tervo, Laura; Mäkelä, Satu; Syrjänen, Jaana et al. (2015) Smoking is associated with aggravated kidney injury in Puumala hantavirus-induced haemorrhagic fever with renal syndrome. Nephrol Dial Transplant 30:1693-8
Woda, Marcia; Mathew, Anuja (2015) Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry. J Immunol Methods 416:167-77
Becerra-Artiles, Aniuska; Dominguez-Amorocho, Omar; Stern, Lawrence J et al. (2015) A Simple Proteomics-Based Approach to Identification of Immunodominant Antigens from a Complex Pathogen: Application to the CD4 T Cell Response against Human Herpesvirus 6B. PLoS One 10:e0142871
Jaiswal, Smita; Smith, Kenneth; Ramirez, Alejandro et al. (2015) Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice. Exp Biol Med (Maywood) 240:67-78
Schmidt, Madelyn R; McGinnes-Cullen, Lori W; Kenward, Sarah A et al. (2014) Modification of the respiratory syncytial virus f protein in virus-like particles impacts generation of B cell memory. J Virol 88:10165-76
Yin, Liusong; Stern, Lawrence J (2014) A novel method to measure HLA-DM-susceptibility of peptides bound to MHC class II molecules based on peptide binding competition assay and differential IC(50) determination. J Immunol Methods 406:21-33

Showing the most recent 10 out of 109 publications