The lung is the critical site of entry for the most deadly form of anthrax infection, inhalation anthrax. Inhalation anthrax s relatively unique in that germinated vegetative bacteria of the etiologic agent of this disease, B.anthracis (Ba), do not cause disease at the site of entry. Instead Ba spores are taken up by resident lung cells and carried through lung lymphatic ducts to the thoracic lymph nodes (TLN), from which site Ba disseminates to cause the highly lethal, terminal phase of the disease. There remain many unanswered questions about this deadly disease. It is not known why vegetative Ba do not cause disease at the site of entry. It is not known what cells take the pathogen out of the lung to the TLN. Most importantly, it s not known what role Ba toxins (lethal toxin, LT;edema toxin, ET) play in this process. The overall goal of this proposal is to answer these questions. The current paradigm, based on mouse models and mouse cell lines, is that LT and ET do not play a significant role in the pathogenesis of inhalation anthrax. This may be correct for mice, but may not apply to humans. Mouse macrophage cell lines are very sensitive to the immunosuppressive effects of LT and express anthrax toxin receptors (ATR). In the last granting period we have determined that human alveolar macrophages (HAM) efficiently kill Ba vegetative bacteria, do not express ATR and are resistant to immunosuppressive effects of LT. We will test a new paradigm that holds that Ba toxins are very important in the early stages of inhalation anthrax and that the role of key lung cells is due to variable expression of the Ba toxins. We will test our new paradigm and answer the unanswered questions regarding inhalation anthrax in three Aims using a novel human lung organ culture model and a baboon inhalation model that is being developed by our colleague, Dr. Kurosawa. In the first Aim we will determine the human lung cells that internalize Ba and the state of the pathogen in these cells by exploiting our human lung organ culture model and by using flow cytometry, cell sorting, and quantitative confocal immunofluorescence microscopy. In the second Aim we will use a modification of the lung organ culture model, and tissue from Dr. Kurosawa's model to determine and confirm the cells that facilitate escape of Ba from the lung using techniques developed in the first Aim. In the final Aim, we will determine the role that Ba toxins play in inhalation anthrax, and whether downregulation of ATR in the lung organ culture model decreases internalization, survival and escape of the pathogen in human lung. This last set of experiments should provide a proof of concept to determine whether or not modulation of anthrax toxin receptors in human lung may be useful as preventative therapy for inhalation anthrax.

Public Health Relevance

Anthrax remains a significant bioterrorist health threat. The disease, when clinically apparent is extremely lethal, the spores are long lived and can be manufactured and distributed easily, the vaccine is difficult to administer, is associated with adverse effects and is not provided to the general public. Furthermore it is difficult to diagnose and thus treatment is often instituted too late to lead to cure. It is also relatively easy to distribute a large dose to an unsuspecting populous.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI062629-10
Application #
8716419
Study Section
Special Emphasis Panel (ZAI1-KS-I (J3))
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$403,295
Indirect Cost
$98,654
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
077333797
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Liu, Ke; Kurien, Biji T; Zimmerman, Sarah L et al. (2016) X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and Sjögren's Syndrome. Arthritis Rheumatol 68:1290-300
Garman, Lori; Smith, Kenneth; Muns, Emily E et al. (2016) Unique Inflammatory Mediators and Specific IgE Levels Distinguish Local from Systemic Reactions after Anthrax Vaccine Adsorbed Vaccination. Clin Vaccine Immunol 23:664-71
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2016) Complexity and Specificity of the Neutrophil Transcriptomes in Juvenile Idiopathic Arthritis. Sci Rep 6:27453
Devera, T Scott; Lang, Gillian A; Lanis, Jordi M et al. (2016) Memory B Cells Encode Neutralizing Antibody Specific for Toxin B from the Clostridium difficile Strains VPI 10463 and NAP1/BI/027 but with Superior Neutralization of VPI 10463 Toxin B. Infect Immun 84:194-204
McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany et al. (2016) Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove. Elife 5:
Wu, Wenxin; Zhang, Wei; Booth, J Leland et al. (2016) Human primary airway epithelial cells isolated from active smokers have epigenetically impaired antiviral responses. Respir Res 17:111
Booth, J Leland; Duggan, Elizabeth S; Patel, Vineet I et al. (2016) Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models. Microbes Infect 18:615-626
Smith, Kenneth; Shah, Hemangi; Muther, Jennifer J et al. (2016) Antigen nature and complexity influence human antibody light chain usage and specificity. Vaccine 34:2813-20
Patel, Vineet Indrajit; Metcalf, Jordan Patrick (2016) Identification and characterization of human dendritic cell subsets in the steady state: a review of our current knowledge. J Investig Med 64:833-47
Kovats, S; Turner, S; Simmons, A et al. (2016) West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol 186:214-226

Showing the most recent 10 out of 105 publications