The lung is the critical site of entry for the most deadly form of anthrax infection, inhalation anthrax. Inhalation anthrax s relatively unique in that germinated vegetative bacteria of the etiologic agent of this disease, B.anthracis (Ba), do not cause disease at the site of entry. Instead Ba spores are taken up by resident lung cells and carried through lung lymphatic ducts to the thoracic lymph nodes (TLN), from which site Ba disseminates to cause the highly lethal, terminal phase of the disease. There remain many unanswered questions about this deadly disease. It is not known why vegetative Ba do not cause disease at the site of entry. It is not known what cells take the pathogen out of the lung to the TLN. Most importantly, it s not known what role Ba toxins (lethal toxin, LT;edema toxin, ET) play in this process. The overall goal of this proposal is to answer these questions. The current paradigm, based on mouse models and mouse cell lines, is that LT and ET do not play a significant role in the pathogenesis of inhalation anthrax. This may be correct for mice, but may not apply to humans. Mouse macrophage cell lines are very sensitive to the immunosuppressive effects of LT and express anthrax toxin receptors (ATR). In the last granting period we have determined that human alveolar macrophages (HAM) efficiently kill Ba vegetative bacteria, do not express ATR and are resistant to immunosuppressive effects of LT. We will test a new paradigm that holds that Ba toxins are very important in the early stages of inhalation anthrax and that the role of key lung cells is due to variable expression of the Ba toxins. We will test our new paradigm and answer the unanswered questions regarding inhalation anthrax in three Aims using a novel human lung organ culture model and a baboon inhalation model that is being developed by our colleague, Dr. Kurosawa. In the first Aim we will determine the human lung cells that internalize Ba and the state of the pathogen in these cells by exploiting our human lung organ culture model and by using flow cytometry, cell sorting, and quantitative confocal immunofluorescence microscopy. In the second Aim we will use a modification of the lung organ culture model, and tissue from Dr. Kurosawa's model to determine and confirm the cells that facilitate escape of Ba from the lung using techniques developed in the first Aim. In the final Aim, we will determine the role that Ba toxins play in inhalation anthrax, and whether downregulation of ATR in the lung organ culture model decreases internalization, survival and escape of the pathogen in human lung. This last set of experiments should provide a proof of concept to determine whether or not modulation of anthrax toxin receptors in human lung may be useful as preventative therapy for inhalation anthrax.

Public Health Relevance

Anthrax remains a significant bioterrorist health threat. The disease, when clinically apparent is extremely lethal, the spores are long lived and can be manufactured and distributed easily, the vaccine is difficult to administer, is associated with adverse effects and is not provided to the general public. Furthermore it is difficult to diagnose and thus treatment is often instituted too late to lead to cure. It is also relatively easy to distribute a large dose to an unsuspecting populous.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI062629-10
Application #
8716419
Study Section
Special Emphasis Panel (ZAI1-KS-I (J3))
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$403,295
Indirect Cost
$98,654
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
077333797
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Dumas, Eric K; Garman, Lori; Cuthbertson, Hannah et al. (2017) Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated. Vaccine 35:3416-3422
Keshari, Ravi S; Silasi, Robert; Lupu, Cristina et al. (2017) In vivo-generated thrombin and plasmin do not activate the complement system in baboons. Blood 130:2678-2681
Marsman, Gerben; von Richthofen, Helen; Bulder, Ingrid et al. (2017) DNA and factor VII-activating protease protect against the cytotoxicity of histones. Blood Adv 1:2491-2502
Remesh, Soumya G; Andreatta, Massimo; Ying, Ge et al. (2017) Unconventional Peptide Presentation by Major Histocompatibility Complex (MHC) Class I Allele HLA-A*02:01: BREAKING CONFINEMENT. J Biol Chem 292:5262-5270
Healy, Laura D; Puy, Cristina; Fernández, José A et al. (2017) Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem 292:8616-8629
Dumas, Eric K; Gross, Timothy; Larabee, Jason et al. (2017) Anthrax Vaccine Precipitated Induces Edema Toxin-Neutralizing, Edema Factor-Specific Antibodies in Human Recipients. Clin Vaccine Immunol 24:
Wang, Xiaoqiu; Wu, Wenxin; Zhang, Wei et al. (2017) RIG-I overexpression decreases mortality of cigarette smoke exposed mice during influenza A virus infection. Respir Res 18:166
Keshari, Ravi Shankar; Silasi, Robert; Popescu, Narcis Ioan et al. (2017) Inhibition of complement C5 protects against organ failure and reduces mortality in a baboon model of Escherichia coli sepsis. Proc Natl Acad Sci U S A :
Patel, Vineet I; Booth, J Leland; Duggan, Elizabeth S et al. (2017) Transcriptional Classification and Functional Characterization of Human Airway Macrophage and Dendritic Cell Subsets. J Immunol 198:1183-1201
Patel, Vineet Indrajit; Metcalf, Jordan Patrick (2016) Identification and characterization of human dendritic cell subsets in the steady state: a review of our current knowledge. J Investig Med 64:833-47

Showing the most recent 10 out of 109 publications