At the present time protection from anthrax exposure is largely based upon vaccination of those considered at risk, particularly including active duty military personnel in combat theaters, veterinarians in certain settings, and laboratory workers. The anti-Protective Antigen (PA) antibody level is widely considered the most easily accessible surrogate for a protective response from anthrax infection. We propose to apply the modern reverse genetics approach to this immune response in an effort to understand the genetic contributors to this vaccine response, in particular, and in the anticipation that genetic variants important in the response to anthrax will also be important in other successful vaccinations. To our knowledge modern reverse genetic tools have not been previously applied to develop a basic understanding of the genetic contribution to any vaccination, much less to anthrax. In three preliminary studies supported during the first grant cycle we have evaluated the relationship between the quantitative levels of anti-PA antibodies to 500,000 single nucleotide polymorphisms (SNPs) covering the autosomes and X chromosome in over 300 participants vaccinated with Anthrax Vaccine Absorbed (AVA). A number of candidate genes have been thereby identified, which warrant replication and fine mapping studies, the first of which is underway. We propose to expand the scope of the genome scan to 1,500,000 screening SNPs, and also to perform replication and fine mapping studies, to secure the participation of a total of 4000 vaccinated subjects, and to evaluate the genomics of the resulting genes. While it has taken a considerable effort to collect the samples necessary for this analysis, with samples now in hand, preliminary data available, and a now constant stream of new samples, the project is now ripe for substantial progress. The results of the project should identify many new genes important for the future development of vaccines and for understanding resistance to lethal anthrax.

Public Health Relevance

Few of the genes that regulate the immune response to vaccination are known. Our preliminary data and proposed increased capacity to screen SNPs promise to reveal many genetic variants governing the human response to AVA, the antrhax vaccine. The accurate identification of these genetic factors will lead to the production of a more effective vaccine. Furthermore, gene identification will provide a better understanding of vaccine efficacy and how adverse effects and non-response can be avoided.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I (J3))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oklahoma Medical Research Foundation
Oklahoma City
United States
Zip Code
Liu, Ke; Kurien, Biji T; Zimmerman, Sarah L et al. (2016) X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and Sjögren's Syndrome. Arthritis Rheumatol 68:1290-300
Garman, Lori; Smith, Kenneth; Muns, Emily E et al. (2016) Unique Inflammatory Mediators and Specific IgE Levels Distinguish Local from Systemic Reactions after Anthrax Vaccine Adsorbed Vaccination. Clin Vaccine Immunol 23:664-71
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2016) Complexity and Specificity of the Neutrophil Transcriptomes in Juvenile Idiopathic Arthritis. Sci Rep 6:27453
Devera, T Scott; Lang, Gillian A; Lanis, Jordi M et al. (2016) Memory B Cells Encode Neutralizing Antibody Specific for Toxin B from the Clostridium difficile Strains VPI 10463 and NAP1/BI/027 but with Superior Neutralization of VPI 10463 Toxin B. Infect Immun 84:194-204
McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany et al. (2016) Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove. Elife 5:
Wu, Wenxin; Zhang, Wei; Booth, J Leland et al. (2016) Human primary airway epithelial cells isolated from active smokers have epigenetically impaired antiviral responses. Respir Res 17:111
Booth, J Leland; Duggan, Elizabeth S; Patel, Vineet I et al. (2016) Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models. Microbes Infect 18:615-626
Smith, Kenneth; Shah, Hemangi; Muther, Jennifer J et al. (2016) Antigen nature and complexity influence human antibody light chain usage and specificity. Vaccine 34:2813-20
Patel, Vineet Indrajit; Metcalf, Jordan Patrick (2016) Identification and characterization of human dendritic cell subsets in the steady state: a review of our current knowledge. J Investig Med 64:833-47
Kovats, S; Turner, S; Simmons, A et al. (2016) West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol 186:214-226

Showing the most recent 10 out of 105 publications