Our overriding theme is ultra high-throughput radiation biodosimetry. It is well established that this is a central and necessary component of any effective response to a large scale radiological event. The RABIT (Rapid Automated Biodosimetry Tool) system developed to date in Project 1 has a current throughput of 6,000 samples / day, and a projected (2010) throughput of 30,000 samples / day. These throughputs were achieved by complete robotically-based automation of standard micronucleus and Y-H2AX assays. One first main renewal theme,

Public Health Relevance

A dirty bomb or improvised nuclear device could result in mass casualties from multiple types of radiation exposures, and a need for rapid, high-throughput biodosimetry to identify those who most require treatment. By developing practical radiological triage approaches that are applicable for partial body, low dose-rate, internal emitters, and mixed neutron exposures, and that start to account for individual radiosensitivity, this project will address a critical need of national preparedness.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI067773-09
Application #
8519236
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
9
Fiscal Year
2013
Total Cost
$925,102
Indirect Cost
$266,371
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Sprung, Carl N; Ivashkevich, Alesia; Forrester, Helen B et al. (2015) Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett 356:72-81
Shuryak, Igor; Lubin, Jay H; Brenner, David J (2014) Potential for adult-based epidemiological studies to characterize overall cancer risks associated with a lifetime of CT scans. Radiat Res 181:584-91
Turner, Helen C; Sharma, P; Perrier, J R et al. (2014) The RABiT: high-throughput technology for assessing global DSB repair. Radiat Environ Biophys 53:265-72
Repin, Mikhail; Turner, Helen C; Garty, Guy et al. (2014) Next generation platforms for high-throughput biodosimetry. Radiat Prot Dosimetry 159:105-10
Laiakis, Evagelia C; Mak, Tytus D; Anizan, Sebastien et al. (2014) Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat Res 181:350-61
Goudarzi, Maryam; Weber, Waylon; Mak, Tytus D et al. (2014) Development of urinary biomarkers for internal exposure by cesium-137 using a metabolomics approach in mice. Radiat Res 181:54-64
Forrester, Helen B; Li, Jason; Leong, Trevor et al. (2014) Identification of a radiation sensitivity gene expression profile in primary fibroblasts derived from patients who developed radiotherapy-induced fibrosis. Radiother Oncol 111:186-93
Forrester, Helen B; Sprung, Carl N (2014) Intragenic controls utilizing radiation-induced alternative transcript regions improves gene expression biodosimetry. Radiat Res 181:314-23
Luo, Xiuquan; Suzuki, Masatoshi; Ghandhi, Shanaz A et al. (2014) ATM regulates insulin-like growth factor 1-secretory clusterin (IGF-1-sCLU) expression that protects cells against senescence. PLoS One 9:e99983
Paul, Sunirmal; Ghandhi, Shanaz A; Weber, Waylon et al. (2014) Gene expression response of mice after a single dose of 137CS as an internal emitter. Radiat Res 182:380-9

Showing the most recent 10 out of 85 publications