The overall goal of the Biostatistics Core (Core B) is to promote scientific rigor in the conduct of RadCCORE research and to ensure the integrity of results. To this end, Core B will offer state-of-the-art biostatistics and bioinformatics support to RadCCORE projects and cores. This includes assistance in the statistical design, analysis and interpretation of data obtained from clinical, pre-clinical and laboratory studies, as well as molecular data obtained from genomic experiments and cell assays. Core B will also provide ongoing consulting and educational services to all RadCCORE investigators. Core B will use existing computing infrastructure resources as an efficient means to support RadCCORE research. It will also strive to take advantage of the vast amount of technical expertise in biostatistics, bioinformatics and information sciences within Duke University.

Public Health Relevance

Biostatistics plays an important role in biomedical research. Collaboration with biostatisticians has resulted in studies with clearly defined objectives, study designs well suited to address the questions being asked, and accurate and appropriate analyses. The Biostatistics Core (Core B) will provide the necessary biostatistics expertise and computational infrastructure in support of RadCCORE research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI067798-09
Application #
8508656
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
9
Fiscal Year
2013
Total Cost
$79,090
Indirect Cost
$10,688
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Mont, Stacey; Davies, Sean S; Roberts Second, L Jackson et al. (2016) Accumulation of isolevuglandin-modified protein in normal and fibrotic lung. Sci Rep 6:24919
Hanbury, David B; Peiffer, Ann M; Dugan, Greg et al. (2016) Long-Term Cognitive Functioning in Single-Dose Total-Body Gamma-Irradiated Rhesus Monkeys ( Macaca mulatta ). Radiat Res 186:447-454
Koechlein, Claire S; Harris, Jeffrey R; Lee, Timothy K et al. (2016) High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo. Nat Commun 7:12169
DeBo, Ryne J; Lees, Cynthia J; Dugan, Greg O et al. (2016) Late Effects of Total-Body Gamma Irradiation on Cardiac Structure and Function in Male Rhesus Macaques. Radiat Res 186:55-64
Batinic-Haberle, Ines; Tovmasyan, Artak; Spasojevic, Ivan (2015) An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--From superoxide dismutation to H2O2-driven pathways. Redox Biol 5:43-65
Gomez, John C; Yamada, Mitsuhiro; Martin, Jessica R et al. (2015) Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumonia. Am J Respir Cell Mol Biol 52:349-64
Hanbury, David B; Robbins, Mike E; Bourland, J Daniel et al. (2015) Pathology of fractionated whole-brain irradiation in rhesus monkeys ( Macaca mulatta ). Radiat Res 183:367-74
Krauss, Jennifer L; Zeng, Rong; Hickman-Brecks, Cynthia L et al. (2015) NLRP12 provides a critical checkpoint for osteoclast differentiation. Proc Natl Acad Sci U S A 112:10455-60
Johnson, Jason N; Hornik, Christoph P; Li, Jennifer S et al. (2015) Response to letters regarding article, "Cumulative radiation exposure and cancer risk estimation in children with heart disease". Circulation 131:e419-20
Cheong, Woo-Chang; Kang, Hye-Ri; Yoon, Hyunyee et al. (2015) Influenza A Virus NS1 Protein Inhibits the NLRP3 Inflammasome. PLoS One 10:e0126456

Showing the most recent 10 out of 178 publications