The Pilots Project Program of the University of Pittsburgh CMCR manages pilot project applications by a highly efficient three-tiered approach. The ultimate goal is to encourage new investigators to enter the field of radiation biology for drug development of radiation mitigators. Drs. Louis Falo, Detcho Stoyanovsky, JIan Yu, and Tao Cheng all obtained new ROI grants based on collaboration with pilot project awardees (Table 1) or education and development core funding (Table 2-3). Recruited and solicited pilot project applications, as well as those coming through the UPCI-CMCR website were initially screened in a telephone conversation with Dr. Greenberger. Some applicants were appropriately discouraged from taking the time necessary to submit a full application, through this telephone conversation in which it was learned that goal of proposed pilot project was Inconsistent with the goals ofthe CMCR Program. This first tier telephone screening technique was appreciated by the applicants In that Dr. Greenberger could direct them to another potential source of pilot project funding for a clinical radiotherapy related project, such as the Pilot Project Program ofthe University of Pittsburgh Cancer Institute SPORE Program In Lung Cancer or SPORE Program in Head and Neck Cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI068021-09
Application #
8515300
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
9
Fiscal Year
2013
Total Cost
$473,678
Indirect Cost
$143,694
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Huang, Zhentai; Epperly, Michael; Watkins, Simon C et al. (2016) Necrostatin-1 rescues mice from lethal irradiation. Biochim Biophys Acta 1862:850-6
Anthonymuthu, Tamil Selvan; Kenny, Elizabeth Megan; Bayır, Hülya (2016) Therapies targeting lipid peroxidation in traumatic brain injury. Brain Res 1640:57-76
Mao, Gaowei; Qu, Feng; St Croix, Claudette M et al. (2016) Mitochondrial Redox Opto-Lipidomics Reveals Mono-Oxygenated Cardiolipins as Pro-Apoptotic Death Signals. ACS Chem Biol 11:530-40
Tejero, Jesús; Kapralov, Alexandr A; Baumgartner, Matthew P et al. (2016) Peroxidase activation of cytoglobin by anionic phospholipids: Mechanisms and consequences. Biochim Biophys Acta 1861:391-401
Scott, Melanie J; Billiar, Timothy R; Stoyanovsky, Detcho A (2016) N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical. Sci Rep 6:38773
Chen, Dongshi; Yu, Jian; Zhang, Lin (2016) Necroptosis: an alternative cell death program defending against cancer. Biochim Biophys Acta 1865:228-36
Kagan, V E; Jiang, J; Huang, Z et al. (2016) NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death Differ 23:1140-51
Zou, Chunbin; Synan, Matthew J; Li, Jin et al. (2016) LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme Alcat1. J Cell Sci 129:51-64
Lazo, John S; Sharlow, Elizabeth R (2016) Drugging Undruggable Molecular Cancer Targets. Annu Rev Pharmacol Toxicol 56:23-40
Stern, Andrew M; Schurdak, Mark E; Bahar, Ivet et al. (2016) A Perspective on Implementing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement of Personalized Medicine. J Biomol Screen 21:521-34

Showing the most recent 10 out of 159 publications