Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder that affects 15-20% of children worldwide. In addition to the characteristic lesions accompanied by intense itching, AD increases the risk of microbial colonization and allergic responses including food allergy, allergic rhinitis, and asthma, in a process referred to as the atopic march. It was noted over 40 years ago that AD lesions were frequently colonized by Staphylococcus aureus. Recently, lesions from AD patients were discovered to be colonized by both S. aureus and S. epidermidis strains that formed biofilms, which are adhesive surface-attached colonies that become highly resistant to antibiotics and immune responses. S. epidermidis is a normal skin commensal that in some contexts can antagonize S. aureus biofilm growth. However, we have found that S. aureus and S. epidermidis are capable of forming synergistic mixed biofilms when co-cultured, which is consistent with recent skin microbiome surveys showing increased prevalence of both S. aureus and S. epidermidis on AD lesional skin. Data from our lab and others has shown that staphylococcal biofilm growth is dependent on intercellular adhesion events mediated by the Aap and SasG proteins expressed on the surfaces of S. epidermidis and S. aureus, respectively. It has recently been shown that Aap and SasG can mediate heterophilic adhesion events between S. epidermidis and S. aureus cells. Our central hypothesis is that such heterophilic protein adhesion events facilitate the growth of strong mixed-species staphylococcal biofilms on AD lesional skin, which promote inflammation, compromise skin barrier function, and result in more severe AD and progression to asthma. Through the proposed aims, we will 1) test whether heterophilic protein interactions between Aap and SasG allow synergistic growth of mixed-species biofilms between Staphylococcus spp colonizing AD but not normal skin; 2) delineate the mechanistic basis by which mixed biofilms promote disease; and 3) test whether synergistic staphylococcal strains that make the strongest mixed biofilms are associated with AD severity, barrier dysfunction, and progression to asthma in M-PAACH children.

Public Health Relevance

The findings from these studies will provide a mechanistic understanding of the role of synergistic microbial interactions in AD and the atopic march and will provide potential new avenues for therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI070235-13
Application #
9547717
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Dong, Gang
Project Start
2006-07-01
Project End
2021-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
13
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Sherrill, Joseph D; Kc, Kiran; Wang, Xinjian et al. (2018) Whole-exome sequencing uncovers oxidoreductases DHTKD1 and OGDHL as linkers between mitochondrial dysfunction and eosinophilic esophagitis. JCI Insight 3:
Rochman, Yrina; Dienger-Stambaugh, Krista; Richgels, Phoebe K et al. (2018) TSLP signaling in CD4+ T cells programs a pathogenic T helper 2 cell state. Sci Signal 11:
Yamani, Amnah; Wu, David; Waggoner, Lisa et al. (2018) The vascular endothelial specific IL-4 receptor alpha-ABL1 kinase signaling axis regulates the severity of IgE-mediated anaphylactic reactions. J Allergy Clin Immunol 142:1159-1172.e5
Khodoun, Marat V; Tomar, Sunil; Tocker, Joel E et al. (2018) Prevention of food allergy development and suppression of established food allergy by neutralization of thymic stromal lymphopoietin, IL-25, and IL-33. J Allergy Clin Immunol 141:171-179.e1
Travers, Jared; Rochman, Mark; Miracle, Cora E et al. (2018) Chromatin regulates IL-33 release and extracellular cytokine activity. Nat Commun 9:3244
Azouz, Nurit P; Ynga-Durand, Mario A; Caldwell, Julie M et al. (2018) The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses. Sci Transl Med 10:
Jensen, Elizabeth T; Kuhl, Jonathan T; Martin, Lisa J et al. (2018) Early-life environmental exposures interact with genetic susceptibility variants in pediatric patients with eosinophilic esophagitis. J Allergy Clin Immunol 141:632-637.e5
Biagini Myers, Jocelyn M; Schauberger, Eric; He, Hua et al. (2018) A Pediatric Asthma Risk Score to better predict asthma development in young children. J Allergy Clin Immunol :
O'Shea, Kelly M; Aceves, Seema S; Dellon, Evan S et al. (2018) Pathophysiology of Eosinophilic Esophagitis. Gastroenterology 154:333-345
Ghandikota, Sudhir; Hershey, Gurjit K Khurana; Mersha, Tesfaye B (2018) GENEASE: real time bioinformatics tool for multi-omics and disease ontology exploration, analysis and visualization. Bioinformatics 34:3160-3168

Showing the most recent 10 out of 112 publications