Coinhibitory signals attenuate T cell receptor signaling and inhibit T cell responses. PD-1 is the prototype coinhibitory receptor and has been shown to be highly expressed on exhausted hepatitis C virus (HCV)- specific T cells that have lost effector functions. Blockade of PD-1 with monoclonal antibodies (mAb) enhances HCV-specific CDS T cells responses in vitro. Our hypothesis is that coinhibitory pathways contribute to exhaustion of HCV-specific T cells, regulating progression to chronic infection, and that blockade of coinhibitory pathways will enhance effective anti-HCV immune responses. Recent work shows that additional coinhibitory pathways contribute to T cell exhaustion and that blockade of multiple coinhibitory pathways optimally enhances T cell responses. Core C will focus on the PD-1, CD160, LAG-3, CTLA4, and CD161 coinhibitory pathways identified by this work. Core C will generate and produce mAbs that will facilitate analysis of the function and expression of the PD-1/PD-1 Ligand pathway as well as other coinhibitory pathways including CD160, LAG-3, CTLA4, and CD161 pathways. Core C will generate novel dimeric and multimeric Ig fusion proteins of these coinhibitory pathway proteins in order to either block or transduce signals via cross-linking receptors. The capacity of these blocking mAbs to enhance HCV-specific T cell responses will be tested. These mAbs and Ig fusion proteins will be used in high throughput assays by Technology Development Project 1 to identify small molecule antagonists of coinhibitory pathways. Core C provides a critical means by which the U19 will achieve its goals of understanding how to manipulate the coinhibitory signals provided by PD-1, CD160, LAG-3, CTLA4, CD161 and their ligands as well as the mechanism of these inhibitory signals. Core C will work closely with project investigators, providing them mAbs and Ig fusion proteins as needed.

Public Health Relevance

Core C will generate the necessary antibodies and proteins that will facilitate analysis of the immune regulatory pathways leading to chronic HCV infection. The production of these critical reagents by a centralized core not only will be time and cost efficient, but also provide standardization that will facilitate comparison of data by investigators in this U19. Core C will work closely with project investigators, providing them mAbs and Ig fusion proteins as needed.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Rowe, Ian A; Tully, Damien C; Armstrong, Matthew J et al. (2016) Effect of scavenger receptor class B type I antagonist ITX5061 in patients with hepatitis C virus infection undergoing liver transplantation. Liver Transpl 22:287-97
Fergusson, J R; Hühn, M H; Swadling, L et al. (2016) CD161(int)CD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunol 9:401-13
Attanasio, John; Wherry, E John (2016) Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity 44:1052-68
Llibre, Alba; López-Macías, Constantino; Marafioti, Teresa et al. (2016) LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. J Immunol 196:2085-94
Kurioka, Ayako; Walker, Lucy J; Klenerman, Paul et al. (2016) MAIT cells: new guardians of the liver. Clin Transl Immunology 5:e98
van Wilgenburg, Bonnie; Scherwitzl, Iris; Hutchinson, Edward C et al. (2016) MAIT cells are activated during human viral infections. Nat Commun 7:11653
Jeffery, Hannah C; van Wilgenburg, Bonnie; Kurioka, Ayako et al. (2016) Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J Hepatol 64:1118-27
Kelly, Christabel; Swadling, Leo; Capone, Stefania et al. (2016) Chronic hepatitis C viral infection subverts vaccine-induced T-cell immunity in humans. Hepatology 63:1455-70
Chusri, Pattranuch; Kumthip, Kattareeya; Hong, Jian et al. (2016) HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep 6:22487
Swadling, Leo; Halliday, John; Kelly, Christabel et al. (2016) Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection. Vaccines (Basel) 4:

Showing the most recent 10 out of 128 publications