Coinhibitory signals attenuate T cell receptor signaling and inhibit T cell responses. PD-1 is the prototype coinhibitory receptor and has been shown to be highly expressed on exhausted hepatitis C virus (HCV)- specific T cells that have lost effector functions. Blockade of PD-1 with monoclonal antibodies (mAb) enhances HCV-specific CDS T cells responses in vitro. Our hypothesis is that coinhibitory pathways contribute to exhaustion of HCV-specific T cells, regulating progression to chronic infection, and that blockade of coinhibitory pathways will enhance effective anti-HCV immune responses. Recent work shows that additional coinhibitory pathways contribute to T cell exhaustion and that blockade of multiple coinhibitory pathways optimally enhances T cell responses. Core C will focus on the PD-1, CD160, LAG-3, CTLA4, and CD161 coinhibitory pathways identified by this work. Core C will generate and produce mAbs that will facilitate analysis of the function and expression of the PD-1/PD-1 Ligand pathway as well as other coinhibitory pathways including CD160, LAG-3, CTLA4, and CD161 pathways. Core C will generate novel dimeric and multimeric Ig fusion proteins of these coinhibitory pathway proteins in order to either block or transduce signals via cross-linking receptors. The capacity of these blocking mAbs to enhance HCV-specific T cell responses will be tested. These mAbs and Ig fusion proteins will be used in high throughput assays by Technology Development Project 1 to identify small molecule antagonists of coinhibitory pathways. Core C provides a critical means by which the U19 will achieve its goals of understanding how to manipulate the coinhibitory signals provided by PD-1, CD160, LAG-3, CTLA4, CD161 and their ligands as well as the mechanism of these inhibitory signals. Core C will work closely with project investigators, providing them mAbs and Ig fusion proteins as needed.

Public Health Relevance

Core C will generate the necessary antibodies and proteins that will facilitate analysis of the immune regulatory pathways leading to chronic HCV infection. The production of these critical reagents by a centralized core not only will be time and cost efficient, but also provide standardization that will facilitate comparison of data by investigators in this U19. Core C will work closely with project investigators, providing them mAbs and Ig fusion proteins as needed.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Lin, Wenyu; Zhu, Chuanlong; Hong, Jian et al. (2015) The spliceosome factor SART1 exerts its anti-HCV action through mRNA splicing. J Hepatol 62:1024-32
Jilg, Nikolaus; Lin, Wenyu; Hong, Jian et al. (2014) Kinetic differences in the induction of interferon stimulated genes by interferon-* and interleukin 28B are altered by infection with hepatitis C virus. Hepatology 59:1250-61
Kroy, Daniela C; Ciuffreda, Donatella; Cooperrider, Jennifer H et al. (2014) Liver environment and HCV replication affect human T-cell phenotype and expression of inhibitory receptors. Gastroenterology 146:550-61
Lee, Mark N; Ye, Chun; Villani, Alexandra-Chloé et al. (2014) Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343:1246980
Crawford, Alison; Angelosanto, Jill M; Kao, Charlly et al. (2014) Molecular and transcriptional basis of CD4? T cell dysfunction during chronic infection. Immunity 40:289-302
Feeney, Eoin R; Chung, Raymond T (2014) Antiviral treatment of hepatitis C. BMJ 348:g3308
Fackler, Oliver T; Murooka, Thomas T; Imle, Andrea et al. (2014) Adding new dimensions: towards an integrative understanding of HIV-1 spread. Nat Rev Microbiol 12:563-74
Xiao, Yanping; Yu, Sanhong; Zhu, Baogong et al. (2014) RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med 211:943-59
Veerapu, Naga Suresh; Park, Su-Hyung; Tully, Damien C et al. (2014) Trace amounts of sporadically reappearing HCV RNA can cause infection. J Clin Invest 124:3469-78
Ussher, James E; Bilton, Matthew; Attwod, Emma et al. (2014) CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur J Immunol 44:195-203

Showing the most recent 10 out of 72 publications