Shigella is a global infection that is notorious for disseminating rapidly in certain settings. One serotype, Shigella dysenteriae type 1 (S. dysenteriae 1), can cause devastating pandemics with high case fatality rates and thus it has been classified as a Category B priority pathogen with high potential to be used as a biological weapon. There is no available vaccine for Shigella. The development of effective Shigella vaccines has been hampered by a considerable lack of information of the specific determinants of protective immunity to Shigella infection. Because of the limitations imposed by the risks associated with performing challenge studies with wild type S. dysenteriae 1 in clinical trials to advance vaccine development, a non-human primate model is urgently needed. We have already established a challenge model with wild-type S. dysenteriae 1 strain 1617 which, to date, exhibited an attack rate of 100% (6 of 6 cynomolgus macaques challenged with 10e11 cfu intragastrically). Furthermore, we have advanced our understanding of the immune responses elicited following challenge. In this application we propose to continue these studies by addressing the following Specific Aims: (1) evaluate the hypothesis that intragastric immunization with novel attenuated S. dysenteriae 1 mutant strains elicits protection from intragastric challenge with wild type S. dysenteriae 1;(2) evaluate the hypotheses that a defined set of immune responses observed in circulation in cynomolgus immunized with attenuated strains of S. dysenteriae 1 and/or challenged with wild type S. dysenteriae 1 correlate with protection and are representative of those present at effector sites (i.e., mucosal tissues) and secondary lymphoid organs. These translational studies are central to further our understanding of the immunological mechanisms that mediate protection to S. dysenteriae 1 and longevity of the responses to vaccination in humans, (3) To evaluate the effects of immunization of monkeys with attenuated S. dysenteriae 1 strains on the colonic microbiota in stools of monkeys and the impact of the existing microbiota on the observed immune responses and protection from challenge. Finally, we will take advantage of an upcoming trial with the attenuated S. dysenteriae 1 strain CVD 1256 to evaluate the hypothesis that the immune responses observed systemically and locally in humans are similar to those that correlate with protection in cynomolgus macaques (Aims 1 and 2). These studies will provide valuable insights that might accelerate the development of attenuated vaccines for S. dysenteriae 1.

Public Health Relevance

The overall objective of this project is to develop a safe and effective vaccine for S. dysenteriae 1, a Category B priority pathogen with potential to be used as a biological weapon. Currently, there is no available vaccine for Shigella and limited treatment options for infections with multiple antibiotic resistant strains. Given the shortcomings of available measures to successfully control this infection, and its bioterrorism potential, to develop a S. dysenteriae type 1 vaccine is of great importance

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI082655-04
Application #
8378480
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
4
Fiscal Year
2012
Total Cost
$428,502
Indirect Cost
$134,027
Name
University of Maryland Baltimore
Department
Type
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Salerno-Goncalves, R; Safavie, F; Fasano, A et al. (2016) Free and complexed-secretory immunoglobulin A triggers distinct intestinal epithelial cell responses. Clin Exp Immunol 185:338-47
Fresnay, Stephanie; McArthur, Monica A; Magder, Laurence et al. (2016) Salmonella Typhi-specific multifunctional CD8+ T cells play a dominant role in protection from typhoid fever in humans. J Transl Med 14:62
Blohmke, Christoph J; Darton, Thomas C; Jones, Claire et al. (2016) Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever. J Exp Med 213:1061-77
Salerno-Goncalves, Rosangela; Fasano, Alessio; Sztein, Marcelo B (2016) Development of a Multicellular Three-dimensional Organotypic Model of the Human Intestinal Mucosa Grown Under Microgravity. J Vis Exp :
McArthur, Monica A; Fresnay, Stephanie; Magder, Laurence S et al. (2015) Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog 11:e1004914
Trebicka, Estela; Shanmugam, Nanda Kumar N; Chen, Kejie et al. (2015) Intestinal Inflammation Leads to a Long-lasting Increase in Resistance to Systemic Salmonellosis that Requires Macrophages But Not B or T Lymphocytes at the Time of Pathogen Challenge. Inflamm Bowel Dis 21:2758-65
Wahid, R; Fresnay, S; Levine, M M et al. (2015) Immunization with Ty21a live oral typhoid vaccine elicits crossreactive multifunctional CD8+ T-cell responses against Salmonella enterica serovar Typhi, S. Paratyphi A, and S. Paratyphi B in humans. Mucosal Immunol 8:1349-59
Booth, Jayaum S; Salerno-Goncalves, Rosangela; Blanchard, Thomas G et al. (2015) Mucosal-Associated Invariant T Cells in the Human Gastric Mucosa and Blood: Role in Helicobacter pylori Infection. Front Immunol 6:466
Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie et al. (2015) Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease. PLoS Negl Trop Dis 9:e0003837
Sztein, Marcelo B; Salerno-Goncalves, Rosangela; McArthur, Monica A (2014) Complex adaptive immunity to enteric fevers in humans: lessons learned and the path forward. Front Immunol 5:516

Showing the most recent 10 out of 41 publications