Vaccination is one of the most successful and cost-effective ways of preventing infectious disease. The development of effective vaccines for infections of the gastrointestinal tract however has been disappointing. The need for these vaccines is crucial since diarrheal diseases due to infectious agents of the gut are the second leading infectious cause of death in infants and young children world wide. Some of the Infectious agents that cause diarrheal diseases include rotavirus, pathogenic Escherichia coli, Shigella spp., Salmonella spp., Cryptosporidium pan/urn, Entamoeba histolytica, and Vibrio cholera. The reason for the lack of suitable vaccines for enteric pathogens is the lack of an effective adjuvant that can be delivered orally with the vaccine to increase its potency at stimulating an immune response. Most experimental oral adjuvants are ineffective or maintain some degree of toxicity. To address this problem, we propose to couple synthetic peptides from enteric pathogens to a safe and stable adjuvant, aluminum oxide nanoparticles for oral immunization. The peptides will be coupled to the nanoparticles in a way that preserves their native conformation in order to optimize the immune response to recognize the native pathogen. Since very few small animal models of enteric disease and immunity exist, we will use the human pathogen Helicobacter pylori (H. pylori) to infect the mouse gastric mucosa and we will test this technology by 1) Identifying epitopes on H. pylori CagL that are crucial for binding of the bacteria to host cells using an antibody blocking assay with human cell lines, 2) Testing the ability of those CagL epitopes, coupled to aluminum oxide nanoparticles, to induce protective immunity when delivered to mice prior to challenge, 3) Testing the ability of those CagL epitopes, coupled to aluminum oxide nanoparticles, to induce antibodies that block pathogenic and carcinogenic events due to H. pylori infection, and 4) Evaluating the antibody response of infected human subjects to determine if these blocking antibodies are induced by natural infection in order to determine if the induction of these antibodies by vaccination would be beneficial to human patients. A reduction of infection, inflammation, or carcinogenesis in the H. pylori model by immunization with stable, targeted peptide epitopes coupled to nanoparticles would provide compelling evidence for subsequent applications against other enteric bacterial infections in humans that induce significant world wide morbidity and mortality.

Public Health Relevance

Infections of the gastrointestinal tract cause serious diarrheal diseases that are the second leading cause of death due to infection world wide. Few vaccines exist for oral immunization to protect against such pathogens. The technology for generating stable peptide vaccines coupled to a safe effective carrier vehicle would help reduce or eliminate significant morbidity and mortality due to infectious diarrheal diseases.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
United States
Zip Code
Salerno-Goncalves, R; Safavie, F; Fasano, A et al. (2016) Free and complexed-secretory immunoglobulin A triggers distinct intestinal epithelial cell responses. Clin Exp Immunol 185:338-47
Fresnay, Stephanie; McArthur, Monica A; Magder, Laurence et al. (2016) Salmonella Typhi-specific multifunctional CD8+ T cells play a dominant role in protection from typhoid fever in humans. J Transl Med 14:62
Blohmke, Christoph J; Darton, Thomas C; Jones, Claire et al. (2016) Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever. J Exp Med 213:1061-77
Salerno-Goncalves, Rosangela; Fasano, Alessio; Sztein, Marcelo B (2016) Development of a Multicellular Three-dimensional Organotypic Model of the Human Intestinal Mucosa Grown Under Microgravity. J Vis Exp :
McArthur, Monica A; Fresnay, Stephanie; Magder, Laurence S et al. (2015) Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog 11:e1004914
Trebicka, Estela; Shanmugam, Nanda Kumar N; Chen, Kejie et al. (2015) Intestinal Inflammation Leads to a Long-lasting Increase in Resistance to Systemic Salmonellosis that Requires Macrophages But Not B or T Lymphocytes at the Time of Pathogen Challenge. Inflamm Bowel Dis 21:2758-65
Wahid, R; Fresnay, S; Levine, M M et al. (2015) Immunization with Ty21a live oral typhoid vaccine elicits crossreactive multifunctional CD8+ T-cell responses against Salmonella enterica serovar Typhi, S. Paratyphi A, and S. Paratyphi B in humans. Mucosal Immunol 8:1349-59
Booth, Jayaum S; Salerno-Goncalves, Rosangela; Blanchard, Thomas G et al. (2015) Mucosal-Associated Invariant T Cells in the Human Gastric Mucosa and Blood: Role in Helicobacter pylori Infection. Front Immunol 6:466
Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie et al. (2015) Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease. PLoS Negl Trop Dis 9:e0003837
Sztein, Marcelo B; Salerno-Goncalves, Rosangela; McArthur, Monica A (2014) Complex adaptive immunity to enteric fevers in humans: lessons learned and the path forward. Front Immunol 5:516

Showing the most recent 10 out of 41 publications