The Autoimmunity Center of Excellence based at the Baylor Institute for Immunology Research in Dallas, Texas aims at 1) advancing the knowledge of pathways and mechanisms that contribute to the development and amplification of Human Systemic Autoimmunity, and 2) developing assays and tools to monitor these dysfunctional pathways in patients. The specific proposed research focuses on characterizing triggers, sensors and helpers of systemic autoimmunity. It capitalizes on the availability of samples from pediatric patients, who manifest disease early in life, often present extreme phenotypes and lack co-morbidities that confound the phenotypes. It will focus on diseases where breakdown of tolerance to Nucleic Acids (NAs) and dysregulated production of Type I Interferon (IFN) and/or Follicular Helper T cells (Tfh) play central pathogenic roles. While the initial focus will be the study of patients with Systemic Lupus Erythematosus (SLE), extrapolation of the Center findings to other systemic autoimmune disease scenarios will be pursued. To this end, BIIR has gathered a highly integrated multidisciplinary team composed of scientists (including immunologists, molecular biologists, bioinformaticians, software engineers) and Physician- Scientists/Clinicians. This multidisciplinary team has worked efficiently together for several years at bed-to bench and bench-to-bed translation to meet the challenges of Human Immunology and Medicine. BIIR has also established strong national and international collaborations. The Center will employ in vitro culture techniques using patient cells and knock-down assays of cell lines and primary human cells, immune profiling strategies reflecting human immune status and function, and an extensive infrastructure to support patient-based studies. Throughout the performance of these mechanistic studies, BIIR recognized the fundamental value of data sharing, data integration and data visualization. Thus, significant efforts have been placed at developing the right bioinformatics and software tools to make possible that clinical and research data provide the most useful information to advance clinical and basic discoveries.

Public Health Relevance

The ACE at Baylor aims at 1) advancing the knowledge of mechanisms that contribute to the development and amplification of Human Systemic Autoimmunity, and 2) developing tools to monitor these dysfunctional pathways in patients. The proposed research focuses on triggers, sensors, and helpers of systemic autoimmunity and capitalizes on the availability of samples from pediatric patients who often have extreme cases of autoimmune disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI082715-08
Application #
9108826
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Johnson, David R
Project Start
2009-05-15
Project End
2019-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
8
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Baylor Research Institute
Department
Type
DUNS #
145745022
City
Dallas
State
TX
Country
United States
Zip Code
75204
Caielli, Simone; Veiga, Diogo Troggian; Balasubramanian, Preetha et al. (2018) A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate. Nat Med :
Horiuchi, Shu; Ueno, Hideki (2018) Potential Pathways Associated With Exaggerated T Follicular Helper Response in Human Autoimmune Diseases. Front Immunol 9:1630
Cepika, Alma-Martina; Banchereau, Romain; Segura, Elodie et al. (2017) A multidimensional blood stimulation assay reveals immune alterations underlying systemic juvenile idiopathic arthritis. J Exp Med 214:3449-3466
Banchereau, Romain; Cepika, Alma-Martina; Banchereau, Jacques et al. (2017) Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annu Rev Immunol 35:337-370
Gu, Jinghua; Wang, Xuan; Chan, Jinyan et al. (2017) Phantom: investigating heterogeneous gene sets in time-course data. Bioinformatics 33:2957-2959
Ueno, Hideki (2016) T follicular helper cells in human autoimmunity. Curr Opin Immunol 43:24-31
Banchereau, Romain; Hong, Seunghee; Cantarel, Brandi et al. (2016) Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell 165:551-65
Schmitt, Nathalie; Liu, Yang; Bentebibel, Salah-Eddine et al. (2016) Molecular Mechanisms Regulating T Helper 1 versus T Follicular Helper Cell Differentiation in Humans. Cell Rep 16:1082-1095
Blanco, Patrick; Ueno, Hideki; Schmitt, Nathalie (2016) T follicular helper (Tfh) cells in lupus: Activation and involvement in SLE pathogenesis. Eur J Immunol 46:281-90
Caielli, Simone; Athale, Shruti; Domic, Bojana et al. (2016) Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med 213:697-713

Showing the most recent 10 out of 41 publications