Infection with respiratory viruses, such as with influenza, coronavirus, and others, results in considerable pulmonary immunopathology, a large component of which results from the host specific immune responses,. Type 1 interferons (IFN-a(3) represent an important component of the innate immune response to most virus infections, and most strains of virus, including the highly pathogenic strains of influenza, have evolved mechanisms to suppress or evade these defenses. In addition to the direct inhibition of viral replication, type 1 interferons possess a variety of other immunomodulatory properties. Recently, however, it has become apparent that lung injury which occurs in the context of the T cell response to experimental influenza infection is considerably more severe in the absence of the IFN-a(3 receptor, and this is not a result of enhanced viral replication. Our data indicate that expression of the inhibitory NKG2A receptor on CD8+ T cells, which is usually induced during the course of viral clearance, is not significantly induced in the absence of the IFN-a3-receptor. Furthermore, the activation threshold of CD8+ T cells is increased by NKG2A activity, and when NKG2A binding to its cognate receptor is blocked, enhanced T cell effector activity is observed. Examination of the requirements for induction of inhibitory NKG2A expression by CD8+ T cells in influenza infection suggests that initial antigen recognition in the presence of IFN-a(3 in the regional lymph node is probably required, though expression is not observed until the cells reach the effector site in the periphery (i.e. the lung parenchyma). In order to understand the role of type 1 interferons on the inhibition of pulmonary immunopathology in respiratory virus infection, we will test the hypothesis that initial antigen engagement in the presence of type 1 interferon results in """"""""priming"""""""" for CD8+ T cell inhibitory NKG2A expression, but that actual receptor expression on CD8+ T cells requires antigen recognition in the lung parenchyma, probably on professional antigen-presenting cells such as dendritic cells. Specifically we propose to analyze the direct and indirect effects of type I interferon on regulation of CD8+ T cell NKG2A expression and immunopathologic potential, and to understand the mechanisms of regulation of CD8+ T cell NKG2A expression by IFN-a(3. This will shed important light into the mechanisms of fine-tuning of the antiviral adaptive immune responses to optimize virus clearance and minimize tissue damage which may occur in the process.

Public Health Relevance

Influenza infection results in considerable damage to infected tissues, and this becomes of paramount importance with infection of the lower respiratory tract, i.e. pneumonia, which is common with highly pathogenic strains. Understanding the fine regulation of antiviral immune responses and the ways in which these responses cause or limit lung injury will be of enormous benefit in designing rational therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI083024-05
Application #
8474687
Study Section
Special Emphasis Panel (ZAI1-BDP-I)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
5
Fiscal Year
2013
Total Cost
$426,990
Indirect Cost
$113,464
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Teoh, Jeffrey J; Gamache, Awndre E; Gillespie, Alyssa L et al. (2016) Acute Virus Control Mediated by Licensed NK Cells Sets Primary CD8+ T Cell Dependence on CD27 Costimulation. J Immunol 197:4360-4370
Jiang, Li; Yao, Shuyu; Huang, Su et al. (2016) Type I IFN signaling facilitates the development of IL-10-producing effector CD8(+) T cells during murine influenza virus infection. Eur J Immunol 46:2778-2788
DeBerge, Matthew P; Ely, Kenneth H; Wright, Peter F et al. (2015) Shedding of TNF receptor 2 by effector CD8⁺ T cells by ADAM17 is important for regulating TNF-α availability during influenza infection. J Leukoc Biol 98:423-34
Kim, Taeg S; Hanak, Mark; Trampont, Paul C et al. (2015) Stress-associated erythropoiesis initiation is regulated by type 1 conventional dendritic cells. J Clin Invest 125:3965-80
Krueger, Peter D; Kim, Taeg S; Sung, Sun-Sang J et al. (2015) Liver-resident CD103+ dendritic cells prime antiviral CD8+ T cells in situ. J Immunol 194:3213-22
Ramana, Chilakamarti V; DeBerge, Matthew P; Kumar, Aseem et al. (2015) Inflammatory impact of IFN-γ in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways. Am J Physiol Lung Cell Mol Physiol 308:L650-7
Steinke, John W; Liu, Lixia; Turner, Ronald B et al. (2015) Immune surveillance by rhinovirus-specific circulating CD4+ and CD8+ T lymphocytes. PLoS One 10:e0115271
Moser, Emily K; Sun, Jie; Kim, Taeg S et al. (2015) IL-21R signaling suppresses IL-17+ gamma delta T cell responses and production of IL-17 related cytokines in the lung at steady state and after Influenza A virus infection. PLoS One 10:e0120169
Moser, Emily K; Hufford, Matthew M; Braciale, Thomas J (2014) Late engagement of CD86 after influenza virus clearance promotes recovery in a FoxP3+ regulatory T cell dependent manner. PLoS Pathog 10:e1004315
DeBerge, Matthew P; Ely, Kenneth H; Enelow, Richard I (2014) Soluble, but not transmembrane, TNF-α is required during influenza infection to limit the magnitude of immune responses and the extent of immunopathology. J Immunol 192:5839-51

Showing the most recent 10 out of 48 publications