The Flow Cytometry Core (FCC) will provide three primary services to support the scientific aims of the four proposed projects;population purification using cell sorting, cytokine identification and quantification using bead based cytokine arrays (Luminex system), and multispectral imaging flow cytometry (MIFC) using the ImageStream system. The first of these services, cell sorting, will be accomplished using a BD DiVa FACSVantage high speed sorter or the recently acquired i-Cyt Reflection high speed sorter. Both of these instruments are full equipped to sort the populations of interest described in the aims of Projects 1, 2, and 3. Evaluation of cytokine profiles of serum/plasma, tissue homogenates and culture supernatants will be accomplished! using the Luminex bead based multiplexing technology. Screening of up to 32 analytes will be available as well as customized panels of analytes of specific interest to accommodate the aims of all four projects. The FCC will provide sample preparation, data acquisition and data analysis for these assays. Thirdly, with the use of the ImageStream imaging flow cytometer, multispectral images as well as statistically robust data will be available to evaluate and confirm protein colocalizations, cytokine production, and cellular activation, as well as provide additional morphological information on cellular populations from the lung, spleen, liver and lymph node. In addition, the FCC has available instrumentation should the need arise to support polychromatic flow cytometry in excess of the capability of the Project leaders'own instrumentation. The FCC will also provide consultative services to the Project leaders in terms of fluorochrome selection, sample preparations, data analysis, and data interpretation. Likewise, the FCC Core Director will coordinate with the Director of the Histology Core (Core B) to insure comprehensive and complimentary services for all four Projects for the evaluation of immune interactions in the process of viral clearance and tissue injury. Flow Cytometry Core will provide the tools to a)isolate specific subsets of cells to further investigate their role in this process, b) identify and quantify the milieu of secreted cytokines/chemokines driving the response, c) capture morphological and fluorescent images of specific cell types identified as key components.

Public Health Relevance

Availability of the appropriate Flow Cytometric technologies is critical to the success of the proposed projects which attempt to dissect the role of the host's innate and adaptive immune responses in viral clearance and tissue destruction from inflammatory responses.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-BDP-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Virginia
United States
Zip Code
Dolina, Joseph S; Braciale, Thomas J; Hahn, Young S (2014) Liver-primed CD8+ T cells suppress antiviral adaptive immunity through galectin-9-independent T-cell immunoglobulin and mucin 3 engagement of high-mobility group box 1 in mice. Hepatology 59:1351-65
Moser, Emily K; Hufford, Matthew M; Braciale, Thomas J (2014) Late engagement of CD86 after influenza virus clearance promotes recovery in a FoxP3+ regulatory T cell dependent manner. PLoS Pathog 10:e1004315
Ely, Kenneth H; Matsuoka, Mitsuo; DeBerge, Matthew P et al. (2014) Tissue-protective effects of NKG2A in immune-mediated clearance of virus infection. PLoS One 9:e108385
DeBerge, Matthew P; Ely, Kenneth H; Enelow, Richard I (2014) Soluble, but not transmembrane, TNF-? is required during influenza infection to limit the magnitude of immune responses and the extent of immunopathology. J Immunol 192:5839-51
Kim, Taeg S; Gorski, Stacey A; Hahn, Steven et al. (2014) Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8(+) T cell differentiation by a CD24-dependent mechanism. Immunity 40:400-13
Yoo, Jae-Kwang; Braciale, Thomas J (2014) IL-21 promotes late activator APC-mediated T follicular helper cell differentiation in experimental pulmonary virus infection. PLoS One 9:e105872
Yoo, Jae-Kwang; Kim, Taeg S; Hufford, Matthew M et al. (2013) Viral infection of the lung: host response and sequelae. J Allergy Clin Immunol 132:1263-76; quiz 1277
Braciale, Thomas J; Hahn, Young S (2013) Immunity to viruses. Immunol Rev 255:5-12
Gorski, Stacey Ann; Hahn, Young S; Braciale, Thomas J (2013) Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS Pathog 9:e1003615
Goh, Celeste; Narayanan, Sowmya; Hahn, Young S (2013) Myeloid-derived suppressor cells: the dark knight or the joker in viral infections? Immunol Rev 255:210-21

Showing the most recent 10 out of 32 publications