The overall purpose of the Biological Informafics Core (BIC) is to provide bidnformafics and biostafisfical support to projects 1 to 3. The core will leverage its major computafional and human infrastructure at the University of Maryland School of Medicine, Institute for Genome Sciences (IGS), to perform 1) Chlamydia trachomatis and Chlamydia caviae genomic based analyses, such as genome sequence assemblies, de novo annotation/remapping and genome sequences comparative analyses, 2) metagenomic analyses of metatranscriptomic data such as transcripts assemblies, functional annotafion, comparative funcfional analyses, phylogenomic analyses of the transcripts, and community metabolic pathways reconstrucfion;3) model-based statistical analyses of community composition in relation to the metadata collected in each project;4) develop a web-based resource for the distribution, access, browsing, querying and analysis of the data generated by each of the three projects 1-3. The Biological Informatics Core will work in close cdlaborafion with Dr. Abdo, at the University of Idaho who will be responsible for the stafisfical analysis, while Dr. White will lead the remaining acfivifies at IGS. The team assembled for this project comprises of experienced bioinformaficists and scienfists, who were at the onset of the genomic revdufion while at the Institute for Genomic Research in the 1990s. Their high level of expertise and commitment to serve the research scientific community with open-access to data and software will be key in making sure that the data and findings of the projects the Biological Informafics Core will support will have maximum impact on the chlamydial and STI clinical and research community.

Public Health Relevance

Chlamydial infecfion are a major health risk to young sexually acfive women and can results in serious condifions such as pelvic infiammatory disease (PID) a cause of infertility in women. Studies on Chlamydial Infecfions have focused on the pathogen itself. It is becoming increasingly evident that the microbes that inhabit the vagina play a critical protecfive role. We will examine how the vaginal microbiota reacts to Chlamydial infecfions and treatments in order to provide a new view of the infecfious

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI084044-04
Application #
8380430
Study Section
Special Emphasis Panel (ZAI1-MMT-M)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
4
Fiscal Year
2012
Total Cost
$311,231
Indirect Cost
$115,687
Name
University of Maryland Baltimore
Department
Type
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Ravel, Jacques; Brotman, Rebecca M (2016) Translating the vaginal microbiome: gaps and challenges. Genome Med 8:35
France, Michael T; Mendes-Soares, Helena; Forney, Larry J (2016) Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina. Appl Environ Microbiol 82:7063-7073
Pittman, Kelly J; Glover, Luke C; Wang, Liuyang et al. (2016) The Legacy of Past Pandemics: Common Human Mutations That Protect against Infectious Disease. PLoS Pathog 12:e1005680
Robinson, Courtney K; Brotman, Rebecca M; Ravel, Jacques (2016) Intricacies of assessing the human microbiome in epidemiologic studies. Ann Epidemiol 26:311-21
Dareng, E O; Ma, B; Famooto, A O et al. (2016) Prevalent high-risk HPV infection and vaginal microbiota in Nigerian women. Epidemiol Infect 144:123-37
Nunn, Kenetta L; Forney, Larry J (2016) Unraveling the Dynamics of the Human Vaginal Microbiome. Yale J Biol Med 89:331-337
Neuendorf, Elizabeth; Gajer, Pawel; Bowlin, Anne K et al. (2015) Chlamydia caviae infection alters abundance but not composition of the guinea pig vaginal microbiota. Pathog Dis 73:
Wang, Liuyang; Oehlers, Stefan H; Espenschied, Scott T et al. (2015) CPAG: software for leveraging pleiotropy in GWAS to reveal similarity between human traits links plasma fatty acids and intestinal inflammation. Genome Biol 16:190
Breshears, Laura M; Edwards, Vonetta L; Ravel, Jacques et al. (2015) Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model. BMC Microbiol 15:276
Nunn, Kenetta L; Wang, Ying-Ying; Harit, Dimple et al. (2015) Enhanced Trapping of HIV-1 by Human Cervicovaginal Mucus Is Associated with Lactobacillus crispatus-Dominant Microbiota. MBio 6:e01084-15

Showing the most recent 10 out of 35 publications