The overall purpose of the Biological Informatics Core (BIC) is to provide bioinformatics and biostatistical support to projects 1 to 3. The core will leverage its major computational and human infrastructure at the University of Maryland School of Medicine, Institute for Genome Sciences (IGS), to perform 1) Chlamydia trachomatis and Chlamydia caviae genomic based analyses, such as genome sequence assemblies, de novo annotation/remapping and genome sequences comparative analyses, 2) metagenomic analyses of metatranscriptomic data such as transcripts assemblies, functional annotation, comparative functional analyses, phylogenomic analyses of the transcripts, and community metabolic pathways reconstruction;3) model-based statistical analyses of community composition in relation to the metadata collected in each project;4) develop a web-based resource for the distribution, access, browsing, querying and analysis of the data generated by each of the three projects 1-3. The Biological Informatics Core will work in close collaboration with Dr. Abdo, at the University of Idaho who will be responsible for the statistical analysis, while Dr. White will lead the remaining activities at IGS. The team assembled for this project comprises of experienced bioinformaticists and scientists, who were at the onset of the genomic revolution while at the Institute for Genomic Research in the 1990s. Their high level of expertise and commitment to serve the research scientific community with open-access to data and software will be key in making sure that the data and findings of the projects the Biological Informatics Core will support will have maximum impact on the chlamydial and STI clinical and research community.

Public Health Relevance

Chlamydial infection are a major health risk to young sexually active women and can results in serious conditions such as pelvic inflammatory disease (PID) a cause of infertility in women. Studies on Chlamydial Infections have focused on the pathogen itself. It is becoming increasingly evident that the microbes that inhabit the vagina play a critical protective role. We will examine how the vaginal microbiota reacts to Chlamydial infections and treatments in order to provide a new view of the infectious.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-MMT-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
United States
Zip Code
Mendes-Soares, Helena; Suzuki, Haruo; Hickey, Roxana J et al. (2014) Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment. J Bacteriol 196:1458-70
Bavoil, Patrik M (2014) What's in a word: the use, misuse, and abuse of the word "persistence" in Chlamydia biology. Front Cell Infect Microbiol 4:27
Bavoil, Patrik M; Byrne, Gerald I (2014) Analysis of CPAF mutants: new functions, new questions (the ins and outs of a chlamydial protease). Pathog Dis 71:287-91
Hickey, Roxana J; Forney, Larry J (2014) Gardnerella vaginalis does not always cause bacterial vaginosis. J Infect Dis 210:1682-3
Adams, Nancy E; Thiaville, Jennifer J; Proestos, James et al. (2014) Promiscuous and adaptable enzymes fill "holes" in the tetrahydrofolate pathway in Chlamydia species. MBio 5:e01378-14
Brotman, Rebecca M; Ravel, Jacques; Bavoil, Patrik M et al. (2014) Microbiome, sex hormones, and immune responses in the reproductive tract: challenges for vaccine development against sexually transmitted infections. Vaccine 32:1543-52
Hovis, Kelley M; Mojica, Sergio; McDermott, Jason E et al. (2013) Genus-optimized strategy for the identification of chlamydial type III secretion substrates. Pathog Dis 69:213-22
Vorimore, Fabien; Hsia, Ru-Ching; Huot-Creasy, Heather et al. (2013) Isolation of a New Chlamydia species from the Feral Sacred Ibis (Threskiornis aethiopicus): Chlamydia ibidis. PLoS One 8:e74823
Yeruva, Laxmi; Spencer, Nicole; Bowlin, Anne K et al. (2013) Chlamydial infection of the gastrointestinal tract: a reservoir for persistent infection. Pathog Dis 68:88-95
Fisher, Derek J; Fernández, Reinaldo E; Maurelli, Anthony T (2013) Chlamydia trachomatis transports NAD via the Npt1 ATP/ADP translocase. J Bacteriol 195:3381-6

Showing the most recent 10 out of 14 publications