Surveillance systems in malaria endemic-countries are needed to capture information on intervention coverage and changes in malaria transmission, infection, and disease. Importantly, surveillance data must be effectively communicated to policy-makers to inform future intervention strategies. However, the capacity to conduct high-quality malaria surveillance is currently inadequate in much of Africa and the existing health information system is insufficient for monitoring progress in malaria control. Data on vector behavior and transmission intensity are not routinely collected. Morbidity and mortality data collected at health facilities may be biased and are often incomplete, inaccurate, and largely rely on clinical diagnosis in the absence of laboratory confirmation. Community surveys are currently the most robust strategy for malaria surveillance, but are expensive and logistically challenging, conducted infrequently with limited geographic coverage, and not comprehensive enough to fully capture the dynamics of transmission, infection, and disease. Identifying the optimal methods of gathering reliable data for routine malaria surveillance is essential for improving our understanding of malaria epidemiology and providing an evidence base for maximizing the impact of control interventions. For this project comprehensive malaria surveillance studies will be conducted at 3 sentinel sites with widely varied epidemiology to collect data on measures of transmission intensity, infection and disease and identify optimal methods for surveillance. Surveillance activities will then be streamlined and expand to 6 sentinel sites to measure the impact of key malaria control interventions on malaria transmission, infection, and disease.
Our specific aims will be: 1) to identify optimal strategies for malaria surveillance in Uganda by comparing different methodologies at multiple sites with varied transmission intensity, 2) to estimate the impact of key malaria control interventions on measures of transmission intensity, infection, and disease using surveillance data at multiple sites in Uganda, and 3) to conduct an economic evaluation of malaria control interventions to identify the optimal coverage levels and mix of interventions at multiple sites in Uganda.

Public Health Relevance

There is a lack of scientific understanding and knowledge of the opfimal approaches to routine malaria surveillancein Africa. The objectives of this project are to establish and validate simplified, reliable, and costeffecfive surveillance tools at various sites across Uganda. This work aims to inform the evaluation of malaria control efforts and to provide a model for malaria surveillance in other malaria endemic countries.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Yeka, Adoke; Kigozi, Ruth; Conrad, Melissa D et al. (2016) Artesunate/Amodiaquine Versus Artemether/Lumefantrine for the Treatment of Uncomplicated Malaria in Uganda: A Randomized Trial. J Infect Dis 213:1134-42
Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J et al. (2016) Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg 110:107-17
Sullivan, Richard T; Ssewanyana, Isaac; Wamala, Samuel et al. (2016) B cell sub-types following acute malaria and associations with clinical immunity. Malar J 15:139
Zhao, Xia; Smith, David L; Tatem, Andrew J (2016) Exploring the spatiotemporal drivers of malaria elimination in Europe. Malar J 15:122
Huber, John H; Johnston, Geoffrey L; Greenhouse, Bryan et al. (2016) Quantitative, model-based estimates of variability in the generation and serial intervals of Plasmodium falciparum malaria. Malar J 15:490
Donnelly, Martin J; Isaacs, Alison T; Weetman, David (2016) Identification, Validation, and Application of Molecular Diagnostics for Insecticide Resistance in Malaria Vectors. Trends Parasitol 32:197-206
Farrington, Lila A; Jagannathan, Prasanna; McIntyre, Tara I et al. (2016) Frequent Malaria Drives Progressive Vδ2 T-Cell Loss, Dysfunction, and CD16 Up-regulation During Early Childhood. J Infect Dis 213:1483-90
Alegana, Victor A; Atkinson, Peter M; Lourenço, Christopher et al. (2016) Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence. Sci Rep 6:29628
Odorizzi, Pamela M; Feeney, Margaret E (2016) Impact of In Utero Exposure to Malaria on Fetal T Cell Immunity. Trends Mol Med 22:877-888
Ruktanonchai, Nick W; DeLeenheer, Patrick; Tatem, Andrew J et al. (2016) Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data. PLoS Comput Biol 12:e1004846

Showing the most recent 10 out of 122 publications