In this project, we address key gaps in our knowledge of P. vivax hypnozoite biology through screening relapse patients for serological markers associated with the carriage of hypnozoites. We also plan to develop the Oxford Nanopore Technologies MinION genomics platform for use at our field sites in India. Finally, we will continue our development of a P. vivax haplotype map to identify India-specific selective sweeps and hot- spots, and sequence the genomes of P. vivax parasites from relapse patients. Our focus on P. vivax biology in this project is concordant with the recent announcement of an Indian National Framework for Malaria Elimination, which outlines a ?Special strategy for P. vivax elimination? since ?more than 80% of the global P. vivax burden is contributed by 3 countries including India?.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI089676-10
Application #
9676201
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
10
Fiscal Year
2019
Total Cost
Indirect Cost
Name
New York University
Department
Type
DUNS #
041968306
City
New York
State
NY
Country
United States
Zip Code
10012
Hoffmann, Angelika; Wassmer, Samuel C (2018) New Syndromes Identified by Neuroimaging during Cerebral Malaria. Am J Trop Med Hyg 98:349-350
Carlton, Jane M (2018) Malaria parasite evolution in a test tube. Science 359:159-160
Thomas, Shalu; Ravishankaran, Sangamithra; Asokan, Aswin et al. (2018) Socio-demographic and household attributes may not necessarily influence malaria: evidence from a cross sectional study of households in an urban slum setting of Chennai, India. Malar J 17:4
Thomas, Shalu; Ravishankaran, Sangamithra; Justin, N A Johnson Amala et al. (2018) Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of Plasmodium vivax and Plasmodium falciparum: a study from a malaria-endemic urban setting, Chennai in India. Malar J 17:201
Huijben, Silvie; Chan, Brian H K; Nelson, William A et al. (2018) The impact of within-host ecology on the fitness of a drug-resistant parasite. Evol Med Public Health 2018:127-137
Wassmer, Samuel Crocodile; Grau, Georges Emile Raymond (2017) Severe malaria: what's new on the pathogenesis front? Int J Parasitol 47:145-152
Beck-Johnson, Lindsay M; Nelson, William A; Paaijmans, Krijn P et al. (2017) The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. R Soc Open Sci 4:160969
Thomas, Shalu; Ravishankaran, Sangamithra; Justin, N A Johnson Amala et al. (2017) Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar J 16:111
Carlton, Jane M; Sullivan, Steven A (2017) A Feast of Malaria Parasite Genomes. Cell Host Microbe 21:310-312
Mohanty, Sanjib; Benjamin, Laura A; Majhi, Megharay et al. (2017) Magnetic Resonance Imaging of Cerebral Malaria Patients Reveals Distinct Pathogenetic Processes in Different Parts of the Brain. mSphere 2:

Showing the most recent 10 out of 64 publications