Core C - Shared Laboratory Resources Core C will centralize and maintain quality control for parasitological and immunological procedures required by the five Projects that comprise the Center, so that the efficient use of equipment and reagent resources is maximized. This includes coordination, performance and monitoring of all work related to parasitological, immunological, nucleic acid and recombinant protein-related procedures, immunological analyses, and bioinformatics analyses among the Projects and the Data Management Core. This Core will also be critical for research capacity building with regard to data sets such as those arising from DNA, gene expression, and protein microarray experiments done in the US (at UCSD and UC Irvine, respectively) because of lack of availability in Peru or Brazil. Analysis of these data sets will be carried out by Project leaders in collaboration with the Bioinformatics unit of Core C, under the direction of Professor Mirko Zimic. This core will centralize collection and handling procedures for biological specimens, register and collation of assay results, transfer and diffusion of acquired technology and will also provide the environment for laboratory-based training for University students, postdoctoral trainees, and visiting investigators.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI089681-03
Application #
8381278
Study Section
Special Emphasis Panel (ZAI1-AWA-M)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
3
Fiscal Year
2012
Total Cost
$118,923
Indirect Cost
$12,105
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Rosas-Aguirre, Angel; Guzman-Guzman, Mitchel; Gamboa, Dionicia et al. (2017) Micro-heterogeneity of malaria transmission in the Peruvian Amazon: a baseline assessment underlying a population-based cohort study. Malar J 16:312
Carrasco-Escobar, Gabriel; Miranda-Alban, Julio; Fernandez-MiƱope, Carlos et al. (2017) High prevalence of very-low Plasmodium falciparum and Plasmodium vivax parasitaemia carriers in the Peruvian Amazon: insights into local and occupational mobility-related transmission. Malar J 16:415
Campos, Melina; Conn, Jan E; Alonso, Diego Peres et al. (2017) Microgeographical structure in the major Neotropical malaria vector Anopheles darlingi using microsatellites and SNP markers. Parasit Vectors 10:76
Sanchez, Juan F; Carnero, Andres M; Rivera, Esteban et al. (2017) Unstable Malaria Transmission in the Southern Peruvian Amazon and Its Association with Gold Mining, Madre de Dios, 2001-2012. Am J Trop Med Hyg 96:304-311
Moreno, Marta; Saavedra, Marlon P; Bickersmith, Sara A et al. (2017) Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals. PLoS Negl Trop Dis 11:e0005337
Cowell, Annie N; Loy, Dorothy E; Sundararaman, Sesh A et al. (2017) Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples. MBio 8:
Li, Fengwu; Bounkeua, Viengngeun; Pettersen, Kenneth et al. (2016) Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X. Malar J 15:111
Hupalo, Daniel N; Luo, Zunping; Melnikov, Alexandre et al. (2016) Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat Genet 48:953-8
Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo et al. (2016) Epidemiology of Plasmodium vivax Malaria in Peru. Am J Trop Med Hyg 95:133-144
Van Voorhis, Wesley C; Adams, John H; Adelfio, Roberto et al. (2016) Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog 12:e1005763

Showing the most recent 10 out of 54 publications