A major challenge in vaccinology is that the efficacy of a vaccine can only be ascertained retrospectively, upon infection. The identification of molecular signatures induced rapidly after vaccination, which correlate with and predict, the later development of protective immune responses, would represent a strategy to prospectively determine vaccine efficacy. Such a strategy would be particularly useful when evaluating the efficacy or immunogenicity of untested vaccines, or in identifying individuals with sub-optimal responses amongst high risk populations such as infants or the elderly. We and others have recently used a systems biology approach to identify early gene signatures that correlate with, and predict the later immune responses in humans vaccinated with the live attenuated yellow fever vaccine YFV-17D. Despite this promising advance, the extent to which such approaches can reveal the immunological mechanisms of action of vaccines, and help discover new correlates of protective immunity, remains untested. Furthermore, the potential public health impact of these strategies in predicting the immunogenicity, or even efficacy, of vaccines that induce sub-optimal responses in immunocompromised populations such as the elderly, needs to be rigorously evaluated. Within this context, the aims of the present grant are:
Aim 1 : Systems biological approaches to identify molecular signatures that predict the sub-optimal immunogenicity of the herpes zoster vaccine, a pneumococcal polysaccharide vaccine (PPV23), and the trivalent inactivated influenza vaccine (TIV) Aim 2: Systems biological analysis of transcriptional and micro RNA networks in dendritic cells from young versus elderly, stimulated in vitro with the herpes zoster vaccine, PPV23 and TIV.
Aim 3 : Systems biological analysis of innate responses during herpes zoster re-activation, and during acute infections caused by Streptococcus pneumoniae The successful completion of these aims will: (i) address important public health concerns regarding impaired immunogenicity of these vaccines in the elderly (ii) provide biological insight into novel innate correlates of immunity, and (iii) represent the first comprehensive evaluation of immune responses to any vaccine in the elderly versus young.

Public Health Relevance

Our recent work with the yellow fever vaccine demonstrates that systems biology approaches provide a new and unbiased way to probe the immune response to vaccination in humans, and discover molecular signatures that can predict vaccine induced immunity. In the present proposal, we seek to determine whether such an approach is generally applicable to different types of vaccines in the young and elderly populations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI090023-04
Application #
8495222
Study Section
Special Emphasis Panel (ZAI1-QV-I)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$936,764
Indirect Cost
$345,363
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Sinclair, Charles; Bommakanti, Gayathri; Gardinassi, Luiz et al. (2017) mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation. Science 357:1014-1021
Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin et al. (2017) Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses. Immunogenetics 69:351-358
Hagan, Thomas; Pulendran, Bali (2017) Will Systems Biology Deliver Its Promise and Contribute to the Development of New or Improved Vaccines? From Data to Understanding through Systems Biology. Cold Spring Harb Perspect Biol :
Kazmin, Dmitri; Nakaya, Helder I; Lee, Eva K et al. (2017) Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc Natl Acad Sci U S A 114:2425-2430
Weinberg, Adriana; Canniff, Jennifer; Rouphael, Nadine et al. (2017) Varicella-Zoster Virus-Specific Cellular Immune Responses to the Live Attenuated Zoster Vaccine in Young and Older Adults. J Immunol 199:604-612
Bowen, James R; Zimmerman, Matthew G; Suthar, Mehul S (2017) Taking the defensive: Immune control of Zika virus infection. Virus Res :
Li, Shuzhao; Sullivan, Nicole L; Rouphael, Nadine et al. (2017) Metabolic Phenotypes of Response to Vaccination in Humans. Cell 169:862-877.e17
Ajami, Nassim E; Gupta, Shakti; Maurya, Mano R et al. (2017) Systems biology analysis of longitudinal functional response of endothelial cells to shear stress. Proc Natl Acad Sci U S A 114:10990-10995
Quicke, Kendra M; Diamond, Michael S; Suthar, Mehul S (2017) Negative regulators of the RIG-I-like receptor signaling pathway. Eur J Immunol 47:615-628
Mukund, Kavitha; Subramaniam, Shankar (2017) Co-expression Network Approach Reveals Functional Similarities among Diseases Affecting Human Skeletal Muscle. Front Physiol 8:980

Showing the most recent 10 out of 85 publications