The proposed studies are directed towards resolving two inter-related current problems in pig-to-nonhuman primate (NHP) organ xenotransplantation using GTKO.CD46.CD55 pigs (designated GE pigs) (i) to identify a clinically-applicable regimen that prevents an adaptive immune response, and (ii) to identify a means of preventing coagulation dysfunction - in the form of thrombocytopenia and/or consumptive coagulopathy (CC) with associated thrombotic microangiopathy. The immune response may influence the development of coagulation disorders, and coagulation dysregulation may influence the immune response. The exact causative factors of CC remain uncertain, but (i) heightened innate immunity (antibody, complement, platelets, macrophages, NK cells), (ii) the adaptive immune response (T and B cells), and (iii) molecular incompatibilities between pig and NHP, may all play roles. Graft vascular heterogeneity may also be evident as CC and thrombocytopenia occur more rapidly in NHPs with pig kidney rather than heart grafts. We propose that genetic modifications in pigs and novel therapies may protect against these factors. We shall use CIITA mutant pigs (with knock-down of SLA Class II) and other pigs transgenic for human thromboregulatory factors on the GTKO background.
Aim 1 : To investigate the efficacy in baboons of a clinically-applicable immunosuppressive regimen in preventing the innate and adaptive immune responses after heterotopic heart Tx from (A) GE pigs (n=6) and (B) GE.CIITA pigs (n=6), and to determine whether prevention of elicited xenogeneic immunity correlates with delay in the onset or prevention of coagulation dysfunction.
Aim 2 : To investigate the coagulation disorders that develop after (A) heterotopic heart Tx (n=6) or (B) life-supporting kidney Tx (n=6) from GE.CIITA pigs additionally transgenic for human TBM in baboons immunosuppressed with a clinically-applicable regimen, and to determine the causes of graft failure and coagulation dysfunction.
Aim 3 : To investigate the coagulation disorders that develop after (A) heterotopic heart Tx (n=6) or (B) life-supporting kidney Tx (n=6) from GE.CIITA.TBM pigs additionally transgenic for human EPCR in baboons immunosuppressed with a clinically-applicable regimen, and to determine the causes of graft failure and coagulation dysfunction.

Public Health Relevance

The proposed studies should provide a clinically-applicable immunosuppressive regimen, and elucidate the efficacy of the expression of human TBM and/or EPCR on pig endothelial cells in preventing the coagulation dysfunction seen following pig heart and kidney Tx in NHPs. The studies should throw light on the remaining barriers that need to be overcome, and indicate what further genetic modifications of the organ-source pig might be advantageous.

Agency
National Institute of Health (NIH)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI090959-05
Application #
8711225
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
City
Pittsburgh
State
PA
Country
United States
Zip Code
15260
Harris, Donald G; Quinn, Kevin J; French, Beth M et al. (2015) Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood. Xenotransplantation 22:102-11
Wijkstrom, Martin; Bottino, Rita; Iwase, Hayoto et al. (2015) Glucose metabolism in pigs expressing human genes under an insulin promoter. Xenotransplantation 22:70-9
Ezzelarab, Mohamed B; Ekser, Burcin; Azimzadeh, Agnes et al. (2015) Systemic inflammation in xenograft recipients precedes activation of coagulation. Xenotransplantation 22:32-47
Nagaraju, Santosh; Bertera, Suzanne; Funair, Amber et al. (2014) Streptozotocin-associated lymphopenia in cynomolgus monkeys. Islets 6:e944441
Iwase, Hayato; Ekser, Burcin; Hara, Hidetaka et al. (2014) Regulation of human platelet aggregation by genetically modified pig endothelial cells and thrombin inhibition. Xenotransplantation 21:72-83
Burdorf, L; Stoddard, T; Zhang, T et al. (2014) Expression of human CD46 modulates inflammation associated with GalTKO lung xenograft injury. Am J Transplant 14:1084-95
Cowan, Peter J; Cooper, David K C; d'Apice, Anthony J F (2014) Kidney xenotransplantation. Kidney Int 85:265-75
Li, Jiang; Ezzelarab, Mohamed B; Ayares, David et al. (2014) The potential role of genetically-modified pig mesenchymal stromal cells in xenotransplantation. Stem Cell Rev 10:79-85
LaMattina, John C; Burdorf, Lars; Zhang, Tianshu et al. (2014) Pig-to-baboon liver xenoperfusion utilizing GalTKO.hCD46 pigs and glycoprotein Ib blockade. Xenotransplantation 21:274-86
Zhou, Huidong; Iwase, Hayato; Wolf, Roman F et al. (2014) Are there advantages in the use of specific pathogen-free baboons in pig organ xenotransplantation models? Xenotransplantation 21:287-90

Showing the most recent 10 out of 34 publications