We recenfiy have demonstrated the feasibility of making measurements of nails in living subjects in situ and in vivo, making it feasible to avoid the need for clipping nails to carry out nail dosimetry, instead making the measurements with a new type of resonator that can make sensifive measurements at a high frequency (9.5 GHz or """"""""X-Band"""""""") directly on the nail in vivo. We will determine fully the feasibility and capability of measurements with sufficient accuracy and sensifivity within the dose range of interest under the conditions that would be needed to apply in the field and then determine what parameters may affect the doseresponse relationships, develop methods to cope with these factors, develop a protocol for fast and accurate dosimetry based on measurements in vivo, and then develop criteria for a clonable prototype of a fully functional EPR dosimetry instrument. We propose to make this instrument capable of being operated by non-expert users. The studies will ufilize our experience in making measurements in vivo with human subjects for tooth dosimetry and our experience in making EPR measurements in vitro in clipped nails. Because the measurements are based on a physical effect of ionizing radiafion, it is expected that they can be made at any time after the exposure within a window of several weeks. These changes are present immediately after exposure and persist for a period of a few weeks allowing measurements to be immediately taken and analyzed If an event did occur. The changes are also unaffected by factors that are likely to be present in the population after such an event and therefore will be complementary and synergistic to biologically based biodosimetry. The results of the measurements in this project will provide a crifical element for the advancement of project 2, advancing understanding of the origins and distribufions of the mechanically-induced EPR signals in nails. The instrumental core will provide critical parts of the developments of the resonators and ultimately in the construction of a sensitive X-Band EPR spectrometer for making the measurements in the field. The TBI core will provide essential access to the patient group with nails irradiated in vivo. The instrumental developments and the construction of the prototype instrument will be carried out in collaboration with Cores A,C , and E.

Public Health Relevance

The development of this technique as a field deployable instrument that can rapidly and accurately assist medical triage would significanfiy advance the ability of the medical response system to cope with a large scale radiafion exposure event, thereby reducing the negafive impact of the incident.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI091173-03
Application #
8382228
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
3
Fiscal Year
2012
Total Cost
$254,518
Indirect Cost
$55,955
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene et al. (2016) Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure. Health Phys 110:391-4
Flood, Ann Barry; Ali, Arif N; Boyle, Holly K et al. (2016) Evaluating the Special Needs of The Military for Radiation Biodosimetry for Tactical Warfare Against Deployed Troops: Comparing Military to Civilian Needs for Biodosimetry Methods. Health Phys 111:169-82
Sholom, S; McKeever, S W S (2016) Emergency EPR dosimetry technique using vacuum-stored dry nails. Radiat Meas 88:41-47
Guy, Mallory L; Zhu, Lihuang; Ramanathan, Chandrasekhar (2015) Design and characterization of a W-band system for modulated DNP experiments. J Magn Reson 261:11-8
Khailov, A M; Ivannikov, A I; Skvortsov, V G et al. (2015) Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air. Radiat Meas 82:1-7
Woflson, Helen; Ahmad, Rizwan; Twig, Ygal et al. (2015) A magnetic resonance probehead for evaluating the level of ionizing radiation absorbed in human teeth. Health Phys 108:326-35
Desmet, Céline M; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria et al. (2015) Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites. PLoS One 10:e0131913
Rychert, Kevin M; Zhu, Gang; Kmiec, Maciej M et al. (2015) Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging. Proc SPIE Int Soc Opt Eng 9417:
Rogan, Peter K; Li, Yanxin; Wickramasinghe, Asanka et al. (2014) Automating dicentric chromosome detection from cytogenetic biodosimetry data. Radiat Prot Dosimetry 159:95-104
Guinan, Eva C; Palmer, Christine D; Mancuso, Christy J et al. (2014) Identification of single nucleotide polymorphisms in hematopoietic cell transplant patients affecting early recognition of, and response to, endotoxin. Innate Immun 20:697-711

Showing the most recent 10 out of 30 publications