The Tissue Analysis Core of this U19 proposal will provide established histologic and molecular analyses of tissues obtained in each of the projects. Tissues will be processed at the time of collection with samples partitioned and stored according to standard protocols that will be developed and supplied by this Core. Drs. Schacker and Estes will develop specialized staining techniques (i.e., double or triple labels using either chromagenic or fluorescent antibodies) as needed over the duration of the grant period. They have appropriate expertise and laboratory support to accomplish these goals. The Core will provide quantitative analysis of specified features of tissues obtained by each of the projects. This will include quantitative analysis of the size of specific cell populations (identified by chromagenic or fluorescent antibody staining) in a specified anatomic location (e.g., the frequency of macrophages in the parafollicular T cell zone). Quantitative data from these analyses will be combined with other analyses to identify location and frequency of specific cell phenotypes not readily identified by immuno-histochemistry (e.g., combining the size of the total CD4+ T cell population in lymph node with flow cytometry data that measures the relative size of the naive subset of CD4+ T cells can provide an estimate of the absolute size of the naive CD4+ T cell in that tissue). The Core will provide specialized techniques for identifying the location and phenotype of cells that are either vDNA+ or vRNA+, including in situ hybridization (vRNA+ cells) and in situ PCR (vDNA+ cells). Combining either of these two in situ techniques with immunohistochemistry allows identification of the exact phenotype of cells that are infected. Whole organ analysis to identify locations of vRNA+ cells will be done in brain, lung, kidney, liver, adrenals, organs of the GU tract, and the entire gut (mouth to anus) to assist in identification of reservoirs of persistent replication. Molecular analyses of all tissues will be performed to measure the frequency of vDNA+ cells and the frequency of 2-LTR circles and integrated DNA. Collectively these data will be used to estimate 1) sites of persistent replication while on suppressive ARV and 2) size and location of reservoirs of cells harboring latent infection.

Public Health Relevance

This Core will locate and describe sites of persistent and latent infection and assist the investigators with tissue analysis. This will lead to a more complete understanding of how eradication of HIV might be accomplished.

National Institute of Health (NIH)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Stevenson, Mario (2015) Role of myeloid cells in HIV-1-host interplay. J Neurovirol 21:242-8
Dunham, Richard M; Vujkovic-Cvijin, Ivan; Yukl, Steven A et al. (2014) Discordance between peripheral and colonic markers of inflammation during suppressive ART. J Acquir Immune Defic Syndr 65:133-41
Ribeiro, Susan P; Milush, Jeffrey M; Cunha-Neto, Edecio et al. (2014) The CD8? memory stem T cell (T(SCM)) subset is associated with improved prognosis in chronic HIV-1 infection. J Virol 88:13836-44
Stock, P G; Barin, B; Hatano, H et al. (2014) Reduction of HIV persistence following transplantation in HIV-infected kidney transplant recipients. Am J Transplant 14:1136-41
Bullen, C Korin; Laird, Gregory M; Durand, Christine M et al. (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20:425-9
Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar et al. (2014) Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS 28:2251-8
Gray, Lachlan R; Roche, Michael; Flynn, Jacqueline K et al. (2014) Is the central nervous system a reservoir of HIV-1? Curr Opin HIV AIDS 9:552-8
Kim, Michelle; Hosmane, Nina N; Bullen, C Korin et al. (2014) A primary CD4(+) T cell model of HIV-1 latency established after activation through the T cell receptor and subsequent return to quiescence. Nat Protoc 9:2755-70
Cockerham, Leslie R; Jain, Vivek; Sinclair, Elizabeth et al. (2014) Programmed death-1 expression on CD4? and CD8? T cells in treated and untreated HIV disease. AIDS 28:1749-58
Anderson, Jenny L; Cheong, Karey; Lee, Amas K H et al. (2014) Entry of HIV in primary human resting CD4(+) T cells pretreated with the chemokine CCL19. AIDS Res Hum Retroviruses 30:207-8

Showing the most recent 10 out of 53 publications