Although combination antiretroviral therapy (ART) can suppress HIV replication indefinitely, it fails to completely eradicate replication-competent HIV. The major barrier to eradication appears to be the existence of long-lived latently infected resting memory T-cells, although low-level cryptic replication in tissue sanctuaries may also be a contributing factor. Identifying the sites of HIV persistence and the mechanisms that account for this persistence is a major theme of our Collaboratory. In optimally-treated HIV-infected humans and SIV-infected macaques, the frequency of infected T-cells in the Gl tract and lymphoid tissue is almost ten times that found in peripheral blood. The mechanism for such enrichment of infected cells in these tissues is not known. Our overall hypothesis is that chemokines play a critical role in both establishing and maintaining latency and that latency is largely established in tissue where there is high expression of specific chemokines that bind to the chemokine receptors (CCR7, CXCR3, CCR6 and CCR5) found in resting CD4+ T-cells.
In Aim 1, we will identify whether the latent reservoir is established in resting CD4+ T-cells with specific chemokine receptor expression, focusing on subsets of resting memory CD4+ T-cells that express either CXCR3, CCR6, or CCR5 and that reside in tissues.
In Aim 2, we will use a novel in vitro model of primary T-cell latency to screen for agents that will reverse latency. We will test the hypothesis that primary infection of resting T-cells using chemokines in vitro accurately reflects latently-infected cells ex vivo, and that this model can be used to screen for compounds that reverse latency. We will use this model to assist others in the Collaboratory to test novel interventions.
In Aim 3, we will explore the impact of the CCR5 antagonist, maraviroc, on circulating and gut tissue-derived, latently-infected CD4+ T-cells. This work will complement the clinical trial ongoing in Project 7.

Public Health Relevance

Although antiretroviral drugs reduce the viral load, they are not curative. HIV persists indefiniely during therapy, particulaly in lymphoid tissues. In this Project, we will investigate the role that chemokines and chemokine receptors have on maintaining HIV latency, and explore the role of chemokine receptor antagonists in accelerating the decay of the reservoir.

National Institute of Health (NIH)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Stevenson, Mario (2015) Role of myeloid cells in HIV-1-host interplay. J Neurovirol 21:242-8
Dunham, Richard M; Vujkovic-Cvijin, Ivan; Yukl, Steven A et al. (2014) Discordance between peripheral and colonic markers of inflammation during suppressive ART. J Acquir Immune Defic Syndr 65:133-41
Ribeiro, Susan P; Milush, Jeffrey M; Cunha-Neto, Edecio et al. (2014) The CD8? memory stem T cell (T(SCM)) subset is associated with improved prognosis in chronic HIV-1 infection. J Virol 88:13836-44
Stock, P G; Barin, B; Hatano, H et al. (2014) Reduction of HIV persistence following transplantation in HIV-infected kidney transplant recipients. Am J Transplant 14:1136-41
Bullen, C Korin; Laird, Gregory M; Durand, Christine M et al. (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20:425-9
Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar et al. (2014) Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS 28:2251-8
Gray, Lachlan R; Roche, Michael; Flynn, Jacqueline K et al. (2014) Is the central nervous system a reservoir of HIV-1? Curr Opin HIV AIDS 9:552-8
Kim, Michelle; Hosmane, Nina N; Bullen, C Korin et al. (2014) A primary CD4(+) T cell model of HIV-1 latency established after activation through the T cell receptor and subsequent return to quiescence. Nat Protoc 9:2755-70
Cockerham, Leslie R; Jain, Vivek; Sinclair, Elizabeth et al. (2014) Programmed death-1 expression on CD4? and CD8? T cells in treated and untreated HIV disease. AIDS 28:1749-58
Anderson, Jenny L; Cheong, Karey; Lee, Amas K H et al. (2014) Entry of HIV in primary human resting CD4(+) T cells pretreated with the chemokine CCL19. AIDS Res Hum Retroviruses 30:207-8

Showing the most recent 10 out of 53 publications