The goal of this proposal is to elucidate the mechanisms by which the adjuvant GM-CSF enhances vaccine induced IgG and IgA responses against SIV. These studies will take advantage ofthe unique resources made available by this consortium and ofthe complementary and integrative expertise ofthe Amara and Pulendran groups, which evaluate novel Env immunogens for the induction of neutralizing Abs (NAbs) (Project 1 and Project 2). the Ahmed/Silvestri/Crotty group, which explores the regulation of Ab responses by T cells (Project 3). and the Cerutti group, which studies the regulation of B cells by innate immune cells (Project 4). B cells provide immune protection against HIV by producing NAbs to envelope (Env) spikes on the surface ofthe virus. However, eliciting robust and sustained NAb responses remains a major obstacle, because Env, the only relevant antigen for NAb induction, is characterized by sequence variation, limited antigenicity and scarce immunogenicity. An additional obstacle relates to the lack of strategies capable of effectively inducing NAbs both systemically and at mucosal sites of entry. Preliminary data from the Amara group show that GM-CSF enhances the avidity and frequency of vaccine-induced SIV-reactive IgG Abs produced in systemic lymphoid organs and elicits release of SIV-specific IgA in intestinal secretions. These effects correlate with increased protection against an intestinal challenge. In this proposal we hypothesize that GM-CSF mobilizes and activates a unique subset of splenic IL-21-producing NBH neutrophils equipped with B cell helper function. We contend that NBH cells enhance systemic IgG and intestinal IgA responses against SIV by inducing Ig heavy chain class switching, V(D)J gene somafic hypermutation and gut-homing receptors in splenic B cells, including marginal zone and memory B cells.
Three aims are proposed.
Aim 1 is to elucidate the mechanism by which GM-CSF induces IgG and IgA class switching in splenic B cells.
Aim 2 is to dissect the mechanism by which GM-CSF induces intestinal homing of splenic IgA class-switched B cells.
Aim 3 is to determine the mechanism by which GM-CSF improves the avidity of vaccine-induced systemic IgG and intestinal IgA responses against SIV..

Public Health Relevance

B cells provide immune protection against HIV infection by producing NAbs to Env spikes on the surface of the virus. Thus far, immunization with recombinant Env subunits has failed to elicit broadly NAbs. The proposed collaborative studies will take advantage of an SIV vaccination model involving GM-CSF to study a novel Ab-inducing immune pathway and help develop novel adjuvant strategies for preventive HIV vaccines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI096187-04
Application #
8681321
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Emory University
Department
Type
DUNS #
City
Atlanta
State
GA
Country
United States
Zip Code
Chamcha, Venkateswarlu; Kannanganat, Sunil; Gangadhara, Sailaja et al. (2016) Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Open Forum Infect Dis 3:ofw034
Smith, S Abigail; Kilgore, Katie M; Kasturi, Sudhir Pai et al. (2016) Signatures in Simian Immunodeficiency Virus SIVsmE660 Envelope gp120 Are Associated with Mucosal Transmission but Not Vaccination Breakthrough in Rhesus Macaques. J Virol 90:1880-7
Locci, Michela; Wu, Jennifer E; Arumemi, Fortuna et al. (2016) Activin A programs the differentiation of human TFH cells. Nat Immunol 17:976-84
Kannanganat, Sunil; Wyatt, Linda S; Gangadhara, Sailaja et al. (2016) High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5α-Restrictive Macaques. J Immunol 197:3586-3596
Cho, Alice; Wrammert, Jens (2016) Implications of broadly neutralizing antibodies in the development of a universal influenza vaccine. Curr Opin Virol 17:110-5
Yu, Cuiling; Liu, Yanling; Chan, Justin Tze Ho et al. (2016) Identification of human plasma cells with a lamprey monoclonal antibody. JCI Insight 1:
Havenar-Daughton, Colin; Reiss, Samantha M; Carnathan, Diane G et al. (2016) Cytokine-Independent Detection of Antigen-Specific Germinal Center T Follicular Helper Cells in Immunized Nonhuman Primates Using a Live Cell Activation-Induced Marker Technique. J Immunol 197:994-1002
Kilgore, Katie M; Murphy, Megan K; Burton, Samantha L et al. (2015) Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope. J Virol 89:8130-51
Chamcha, Venkateswarlu; Jones, Andrew; Quigley, Bernard R et al. (2015) Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut. J Immunol 195:5025-34
Kwa, Suefen; Sadagopal, Shanmugalakshmi; Shen, Xiaoying et al. (2015) CD40L-adjuvanted DNA/modified vaccinia virus Ankara simian immunodeficiency virus (SIV) vaccine enhances protection against neutralization-resistant mucosal SIV infection. J Virol 89:4690-5

Showing the most recent 10 out of 48 publications