Innate immune responses permit strong resistance to infection during the hours and days that follow inoculation of microbes. The innate immune system is "hard wired" in the sense that it depends upon germline-encoded receptors to recognize microbes, and signal transduction pathways to elicit the genetic and biochemical responses that restrict infection. Within our species, inter-individual differences in susceptibility to infection likely reflect differences in innate immune performance, based on differences in genetic mal

Public Health Relevance

When an infection occurs, the innate immune system normally contains it long enough for antibodies and T cells to deal with it definitively. Sometimes innate immunity may even sterilize an infection completely. Hundreds of genes encode proteins that make up our innate immune system, and in identifying all essential components of this system, we may hope to understand what occasionally goes wrong with it: why some people are more prone to infection than others. We may also be able to fashion more effective vaccines. This project is dedicated to the identification of new components of the innate immune system.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI100627-02
Application #
8523783
Study Section
Special Emphasis Panel (ZAI1-QV-I)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
2
Fiscal Year
2013
Total Cost
$787,767
Indirect Cost
$44,430
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Bendall, Sean C; Davis, Kara L; Amir, El-Ad David et al. (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:714-25
Zak, Daniel E; Tam, Vincent C; Aderem, Alan (2014) Systems-level analysis of innate immunity. Annu Rev Immunol 32:547-77
Gaudillière, Brice; Fragiadakis, Gabriela K; Bruggner, Robert V et al. (2014) Clinical recovery from surgery correlates with single-cell immune signatures. Sci Transl Med 6:255ra131
Knijnenburg, Theo A; Ramsey, Stephen A; Berman, Benjamin P et al. (2014) Multiscale representation of genomic signals. Nat Methods 11:689-94
Gold, Elizabeth S; Diercks, Alan H; Podolsky, Irina et al. (2014) 25-Hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc Natl Acad Sci U S A 111:10666-71
Yang, Yong; Kulka, Kathleen; Montelaro, Ronald C et al. (2014) A hydrolase of trehalose dimycolate induces nutrient influx and stress sensitivity to balance intracellular growth of Mycobacterium tuberculosis. Cell Host Microbe 15:153-63
Altin, John A; Daley, Stephen R; Howitt, Jason et al. (2014) Ndfip1 mediates peripheral tolerance to self and exogenous antigen by inducing cell cycle exit in responding CD4+ T cells. Proc Natl Acad Sci U S A 111:2067-74
Zeng, Ming; Hu, Zeping; Shi, Xiaolei et al. (2014) MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science 346:1486-92
Angelo, Michael; Bendall, Sean C; Finck, Rachel et al. (2014) Multiplexed ion beam imaging of human breast tumors. Nat Med 20:436-42
Wang, James Q; Jeelall, Yogesh S; Beutler, Bruce et al. (2014) Consequences of the recurrent MYD88(L265P) somatic mutation for B cell tolerance. J Exp Med 211:413-26

Showing the most recent 10 out of 23 publications