Project 2 will apply systems approaches to dissect the complex problem of TB disease progression in vivo, a first for the field. We first describe an innovative screening strategy to identify the MTB genes critical for disease progression in the lung. Previously we built a DNA binding/gene expression model that allows us to predict a regulon for every MTB transcription factor, and assembled a unique collection of MTB strains in which expression of every regulator is perturbed. We will use these strains to perturb every MTB gene regulatory network during aerosol infection of mouse lungs. Once key regulators are identified, we will quantitate and characterize the changes in infected cell types and determine the specific points in disease progression where particular mutants show altered responses. We then perform detailed systems analysis of the key genes and their predicted regulons using bone marrow macrophages infected ex vivo. We will collect host and MTB transcriptomes, MTB global protein level changes and condition-specific ChlP-seq on key MTB regulators from within matched samples of infected macrophages. These data will fuel modeling of both the bacterial and host response networks, predictions from which will drive a new round of mutant evaluation, omics-scale data collection and additional modeling. Our ultimate modeling Aim, a novel integrated host/MTB network model will be tested using samples from humans, with both candidate mutant bacteria and specific host genes modulated by siRNA. In recent years, we have contributed substantially to the infrastructure needed for systems biology, including the development of key tools for data generation, analysis and modeling. We have also made a strong start for systems analysis of MTB, producing predictive gene regulatory networks based on large-scale ChlP-seq and expression studies. This project combines separate advances in microbiology, transcriptomics, molecular genetics, ChlP-seq, proteomics and network modeling to produce an experimentally grounded and verifiable systems-level model of the MTB regulatory networks that affect disease progression.

Public Health Relevance

Mycobacterium tuberculosis causes ~9 million new cases of active disease and 1.4 million deaths each year, and our tools to combat tuberculosis (TB) disease are universally outdated and overmatched. This project combines separate advances in systems biology and network modeling to produce an experimentally grounded and verifiable systems-level model of the MTB regulatory networks that affect disease progression

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI106761-02
Application #
8686746
Study Section
Special Emphasis Panel (ZAI1-EC-M)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
2
Fiscal Year
2014
Total Cost
$669,878
Indirect Cost
$305,814
Name
Seattle Biomedical Research Institute
Department
Type
DUNS #
070967955
City
Seattle
State
WA
Country
United States
Zip Code
98109
Nicod, Charlotte; Banaei-Esfahani, Amir; Collins, Ben C (2017) Elucidation of host-pathogen protein-protein interactions to uncover mechanisms of host cell rewiring. Curr Opin Microbiol 39:7-15
Banaei-Esfahani, Amir; Nicod, Charlotte; Aebersold, Ruedi et al. (2017) Systems proteomics approaches to study bacterial pathogens: application to Mycobacterium tuberculosis. Curr Opin Microbiol 39:64-72
Woodworth, J S; Cohen, S B; Moguche, A O et al. (2017) Subunit vaccine H56/CAF01 induces a population of circulating CD4 T cells that traffic into the Mycobacterium tuberculosis-infected lung. Mucosal Immunol 10:555-564
Thompson, Ethan G; Du, Ying; Malherbe, Stephanus T et al. (2017) Host blood RNA signatures predict the outcome of tuberculosis treatment. Tuberculosis (Edinb) 107:48-58
Levitte, Steven; Adams, Kristin N; Berg, Russell D et al. (2016) Mycobacterial Acid Tolerance Enables Phagolysosomal Survival and Establishment of Tuberculous Infection In Vivo. Cell Host Microbe 20:250-8
Peterson, Eliza J R; Ma, Shuyi; Sherman, David R et al. (2016) Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat Microbiol 1:16078
Rothchild, Alissa C; Sissons, James R; Shafiani, Shahin et al. (2016) MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 113:E6172-E6181
Minch, Kyle J; Rustad, Tige R; Peterson, Eliza J R et al. (2015) The DNA-binding network of Mycobacterium tuberculosis. Nat Commun 6:5829
Ma, Shuyi; Minch, Kyle J; Rustad, Tige R et al. (2015) Integrated Modeling of Gene Regulatory and Metabolic Networks in Mycobacterium tuberculosis. PLoS Comput Biol 11:e1004543
Zak, Daniel E; Aderem, Alan (2015) Systems integration of innate and adaptive immunity. Vaccine 33:5241-8

Showing the most recent 10 out of 18 publications