Antimicrobial innovation by Big Pharma has slowed to a crawl while an epidemic of antimicrobial-resistant infections surges, threatening the public health. The overarching goal ofthe Wisconsin Antimicrobial Drug Discovery and Development Center is to develop therapeutic countermeasures to tackle the antimicrobial resistance crisis. Based upon our preliminary data, we hypothesize that natural product exploration of symbiotic environments using complementary cutting-edge approaches will provide a new paradigm for discovery of novel antimicrobials targeting drug resistant infections. The Center proposes innovative conceptual and technical advances to overcome critical bottlenecks identified in traditional antimicrobial drug discovery platforms. The success of this endeavor hinges upon the cohesive efforts from a diverse group of scientists and technical resources. The Administrative Core will directed by Andes, co-directed by Currie, and advised by an Internal and External Advisory Board comprised of experts in infectious diseases, antimicrobial resistance, drug discovery and development, natural products, and technology transfer and licensing. Additionally, it will include an administrator with extensive experience in research and business administration, and prior oversight of NIH funded program projects and centers. The overall goals of the administrative core are to provide leadership and the organizational back bone for this proposal, promote collaboration between the Projects and Cores, and coordinate its interaction with NIAID staff.

Public Health Relevance

There are no effective therapies for the emerging resistant pathogens that are becoming an increasing threat to the public health. The goals of the Center are to provide new, broad spectrum antimicrobial agents through a collaborative focus on high value natural product leads produced by under-explored sources of biological diversity

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI109673-01
Application #
8642730
Study Section
Special Emphasis Panel ()
Project Start
Project End
Budget Start
2014-04-10
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$133,847
Indirect Cost
$34,763
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Adnani, Navid; Rajski, Scott R; Bugni, Tim S (2017) Symbiosis-inspired approaches to antibiotic discovery. Nat Prod Rep 34:784-814
Lawry, Stephanie M; Tebbets, Brad; Kean, Iain et al. (2017) Fludioxonil Induces Drk1, a Fungal Group III Hybrid Histidine Kinase, To Dephosphorylate Its Downstream Target, Ypd1. Antimicrob Agents Chemother 61:
Ramadhar, Timothy R; Zheng, Shao-Liang; Chen, Yu-Sheng et al. (2017) The Crystalline Sponge Method: A Solvent-Based Strategy to Facilitate Noncovalent Ordered Trapping of Solid and Liquid Organic Compounds. CrystEngComm 19:4528-4534
Mevers, Emily; Chouvenc, Thomas; Su, Nan-Yao et al. (2017) Chemical Interaction among Termite-Associated Microbes. J Chem Ecol 43:1078-1085
Zhang, Fan; Barns, Kenneth; Hoffmann, F Michael et al. (2017) Thalassosamide, a Siderophore Discovered from the Marine-Derived Bacterium Thalassospira profundimaris. J Nat Prod 80:2551-2555
Mevers, Emily; SaurĂ­, Josep; Liu, Yizhou et al. (2016) Homodimericin A: A Complex Hexacyclic Fungal Metabolite. J Am Chem Soc 138:12324-7
Lewin, Gina R; Carlos, Camila; Chevrette, Marc G et al. (2016) Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annu Rev Microbiol 70:235-54
Ruzzini, Antonio C; Clardy, Jon (2016) Gene Flow and Molecular Innovation in Bacteria. Curr Biol 26:R859-R864
Zhang, Yan; Adnani, Navid; Braun, Doug R et al. (2016) Micromonohalimanes A and B: Antibacterial Halimane-Type Diterpenoids from a Marine Micromonospora Species. J Nat Prod 79:2968-2972
Arango, R A; Carlson, C M; Currie, C R et al. (2016) Antimicrobial Activity of Actinobacteria Isolated From the Guts of Subterranean Termites. Environ Entomol 45:1415-1423

Showing the most recent 10 out of 17 publications