This Administrative Core (Core A) will provide the necessary scientific, organizational, and fiscal oversight of the Consortium for Development of Immunotherapeutics Against Viral Hemorrhagic Fevers. This consortium includes multiple investigators and a vast array of antibodies with in vitro or in vivo efficacy against the filoviruses and arenaviruses. An essential feature ofthe consortium is coordination of projects and studies on these antibodies, so that effort is not unduly duplicated, the separate multidisciplinary analyses integrate effectively and seamlessly, and the group achieves maximum synergy. The Administrative Core will develop and implement a management plan to ensure the success of this program. This Core will continuously monitor the scientific progress of each component of the program and ensure that results, the meaning of the results, and next steps are effectively communicated to the rest of the group at each stage. This Core will also facilitate communications with the NIH, the larger research community, and our external advisors so that these comprehensive studies are definitive and defined by consensus in the fields, and so that the resulting products can be effectively translated toward clinical use. The Core will manage financial resources and ensure that the select agent, vertebrate animal, human subject, and intellectual property issues are respected. The Core will also initiate all external collaborations and oversee invitation, selection, and progress of supplemental research activities as directed by the NIH.

Public Health Relevance

This Core will provide the necessary administrative, organizational and fiscal oversight to ensure that critical antibody therapeutics against viral hemorrhagic fevers are translated toward patient use.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI109762-03
Application #
9023417
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2016-03-01
Budget End
2017-02-28
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Hastie, Kathryn M; Saphire, Erica Ollmann (2018) Lassa virus glycoprotein: stopping a moving target. Curr Opin Virol 31:52-58
Gunn, Bronwyn M; Yu, Wen-Han; Karim, Marcus M et al. (2018) A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host Microbe 24:221-233.e5
King, Liam B; West, Brandyn R; Schendel, Sharon L et al. (2018) The structural basis for filovirus neutralization by monoclonal antibodies. Curr Opin Immunol 53:196-202
Amanat, Fatima; Duehr, James; Oestereich, Lisa et al. (2018) Antibodies to the Glycoprotein GP2 Subunit Cross-React between Old and New World Arenaviruses. mSphere 3:
Flyak, Andrew I; Kuzmina, Natalia; Murin, Charles D et al. (2018) Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2-MPER region. Nat Microbiol 3:670-677
Murin, Charles D; Bruhn, Jessica F; Bornholdt, Zachary A et al. (2018) Structural Basis of Pan-Ebolavirus Neutralization by an Antibody Targeting the Glycoprotein Fusion Loop. Cell Rep 24:2723-2732.e4
King, Liam B; Fusco, Marnie L; Flyak, Andrew I et al. (2018) The Marburgvirus-Neutralizing Human Monoclonal Antibody MR191 Targets a Conserved Site to Block Virus Receptor Binding. Cell Host Microbe 23:101-109.e4
Saphire, Erica Ollmann; Schendel, Sharon L; Fusco, Marnie L et al. (2018) Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell 174:938-952.e13
Siragam, Vinayakumar; Wong, Gary; Qiu, Xiang-Guo (2018) Animal models for filovirus infections. Zool Res 39:15-24
West, Brandyn R; Moyer, Crystal L; King, Liam B et al. (2018) Structural Basis of Pan-Ebolavirus Neutralization by a Human Antibody against a Conserved, yet Cryptic Epitope. MBio 9:

Showing the most recent 10 out of 62 publications