The Discovery and Translational Services will provide commonly needed services that require specialized equipment and capabilities that are not generally available in a typical microbiological research laboratory, additional expertise to investigators in fields outside their areas of specialization, access to research technologies not otherwise available and to translational and product development capabilities. These services will include both services provided by core staff and services provided on a fee-for-service basis. The core will make use of a management structure that encourages productive and creative collaboration and allows integration and coordination between research project investigators and core scientific staff. The specific services provided or made available include: biomolecule production small molecule screening medicinal chemistry discovery formulation assessment of compound toxicity in vitro MIC determination animal models of infection

Public Health Relevance

Individual investigators do not possess all ofthe expertise, equipment, and capabilities necessary to complete the discovery and translational objectives of the Center. This core will either provide needed research services directly or through fee-for-service relationships with other research service providers. The core will also be a source of translational expertise available to all Center investigators.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI109764-01
Application #
8654388
Study Section
Special Emphasis Panel (ZAI1-LR-M (J1))
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
1
Fiscal Year
2014
Total Cost
$1,068,010
Indirect Cost
$425,857
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Cho, Hongbaek; Uehara, Tsuyoshi; Bernhardt, Thomas G (2014) Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159:1300-11
Lebar, Matthew D; May, Janine M; Meeske, Alexander J et al. (2014) Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis. J Am Chem Soc 136:10874-7
Qiao, Yuan; Lebar, Matthew D; Schirner, Kathrin et al. (2014) Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. J Am Chem Soc 136:14678-81