Cryptosporidiosis is a globally important disease which is underappreciated as a cause of morbidity and mortality in children. It is also common in persons with AIDS and in children with persistent diarrhea who suffer growth retardation and malnutrition. No effective therapy exists. The recent Global Enteric Multicenter Study (GEMS) reported that moderate-to-severe diarrheal disease in the pediatric population in 4 sites in sub-Saharan Africa and 3 sites in South Asia, Cryptosporidium was second only to rotavirus as a cause of disease in children < 2 years of age. This application proposes to develop Cryptosporidium vaccines for humans. There are two species of this enteric parasite, C. hominis and C. parvum, both of which cause illness in humans, although C. hominis is more pathogenic and more frequently associated with disease in humans. The gnotobiotic (GB) piglet is the only model that results in diarrhea following challenge with C. hominis, while C. parvum infects all mammals including humans. Piglets that recover from Cryptosporidium diarrhea are significantly protected when re-challenged with the homologous species (Aim 1), and partially protected against C. parvum. We propose to perform a series of studies in piglets to address the fundamental hypothesis that specific antibodies protect against Cryptosporidium.
Specific Aim 1 : Re-demonstrate that C. hominis or C. parvum diarrheal infection of GB piglets results in active infection-derived immunity that is protective against parasite rechallenge.
Specific Aim 2 : Determine whether passive transfer of antibodies from immunized sows confers passive protection to their suckling offsprings against challenge with the homologous species.
Specific Aim 3 : Determine whether passive transfer of circulating or intestinal antibodies from immunized sows can protect GB piglets challenged with homologous or heterologous species.
Specific Aim 4 : Identify surface antigens of C. hominis and C. parvum sporozoites using immunoproteomics and reverse vaccinology approaches. Serum IgG and milk IgA from Aims 1 and 2 will be used in immunoproteomic techniques to identify antigen targets of these antibodies.
Specific Aim 5 : Determine whether putative C. hominis and C. parvum protective antigens identified in Aims 4 & 5 will protect GB piglets or mice when administered a) parenterally as purified proteins, b) expressed by a Salmonella Typhi live vector or c) in a prime boost strategy (prime with live vector followed by a boost with purified antigen).

Public Health Relevance

Cryptosporidium is a gastrointestinal parasite that causes diarrhea in humans and animals, and against which there is no treatment or vaccine. It was recently shown in studies in Africa and in South East Asia to be the second most important cause of disease in young children; the first being viral gastroenteritis. It is globally important and underappreciated. We propose to develop human vaccines against this diarrheal infection.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
United States
Zip Code
Yu, Hua; Chen, Kevin; Sun, Ying et al. (2017) Cytokines Are Markers of the Clostridium difficile-Induced Inflammatory Response and Predict Disease Severity. Clin Vaccine Immunol 24:
Salerno-Gonçalves, Rosângela; Tettelin, Hervé; Lou, David et al. (2017) Use of a novel antigen expressing system to study the Salmonella enterica serovar Typhi protein recognition by T cells. PLoS Negl Trop Dis 11:e0005912
Ramachandran, Girish; Panda, Aruna; Higginson, Ellen E et al. (2017) Virulence of invasive Salmonella Typhimurium ST313 in animal models of infection. PLoS Negl Trop Dis 11:e0005697
Zhang, Yongrong; Yang, Zhiyong; Gao, Si et al. (2017) The role of purified Clostridium difficile glucosylating toxins in disease pathogenesis utilizing a murine cecum injection model. Anaerobe 48:249-256
Sears, Khandra T; Tennant, Sharon M; Reymann, Mardi K et al. (2017) Bioactive Immune Components of Anti-Diarrheagenic Enterotoxigenic Escherichia coli Hyperimmune Bovine Colostrum Products. Clin Vaccine Immunol 24:
Booth, Jayaum S; Patil, Seema A; Ghazi, Leyla et al. (2017) Systemic and Terminal Ileum Mucosal Immunity Elicited by Oral Immunization With the Ty21a Typhoid Vaccine in Humans. Cell Mol Gastroenterol Hepatol 4:419-437
Salerno-Goncalves, Rosângela; Luo, David; Fresnay, Stephanie et al. (2017) Challenge of Humans with Wild-type Salmonella enterica Serovar Typhi Elicits Changes in the Activation and Homing Characteristics of Mucosal-Associated Invariant T Cells. Front Immunol 8:398
Fresnay, Stephanie; McArthur, Monica A; Magder, Laurence S et al. (2017) Importance of Salmonella Typhi-Responsive CD8+ T Cell Immunity in a Human Typhoid Fever Challenge Model. Front Immunol 8:208
Sztein, Marcelo B (2017) Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? CD8 T-Cell-Mediated Protective Immunity and Vaccination against Enteric Bacteria. Cold Spring Harb Perspect Biol :
Jiang, Bowen; Yu, Hua; Zhang, Yongrong et al. (2017) A Multiparticulate Delivery System for Potential Colonic Targeting Using Bovine Serum Albumin as a Model Protein : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li. Pharm Res 34:2663-2674

Showing the most recent 10 out of 49 publications