Immune responses to infections occur in two phases, an early relatively nonspecitic (innate) response and a later specific (adaptive or acquired).response associated with the expansions of antigen-reactive clones of T and B cells. My laboratory in the 1970s helped develop this paradigm by demonstrating an interferon (IFN)- induced activated natural killer (NK) cell peak followed by a virus-specific cytotoxic T cell peak. NK cells are now considered important anti-viral components of the innate immune system. Paradoxically, we now have surprising evidence that the depletion of NK cells can sometimes enhance viral clearance or inhibit immunopathological disease. Under these conditions NK cells are harmful to host because they alter the acquired immune response, in part by killing activated CD4 T cells, which regulate viral infections directly and indirectly by their actions on CDS T cells and B cells. However, under other conditions the presence of NK cells is needed to promote persistent infections, also in part due to their ability to regulate T cell responses. We show here that whereas the inhibitory molecule 2B4 restrains NK cells from attacking CDS T cells, activated NK cells can kill activated CD4 T cells and in so doing decrease both CD4 and CDS T cell numbers and functionality during viral infections. We propose to determine, using several different systems, the mechanism(s) by which NK cells affect newly developing T cell responses and contribute to the pathogenesis of viral disease in the lung, and we will collaborate with, other program investigators to translate these findings into human systems. Specifically, we propose the following specific aims:
Specific Aim #1 : To determine whether the direct NK cell control of T cell responses is a universal feature in anti-viral T cell responses.
Specific Aim #2 : To determine, in collaboration with Project 2 and Core 0, the functional, physiological, and antigenic state of 004 T cells that are susceptible to NK cell mediated lysis.
Specific Aim #3 : To determine the role of NK cells in regulating antiviral antibody responses.
Specific Aim #4 : To examine the NK cell-dependent regulation of pathology and persistence and effects of NK cells on T cell exhaustion. The work meets the objectives of RFA-AI-12-048, in that it (1) examines interactions between innate and adaptive immune mechanisms in viral systems, (2) examines such actions at mucosal sites, in this case the lung, and (3) examines how different T and B cell subsets are maintained after infection.

Public Health Relevance

The pathogenesis of many acute and persistent viral infections is controlled by T cells, but we show here that these T cell responses may be substantially regulated by NK cells activated at early stages of infection Clarifying this phenomenon will help in providing insights on how the immune system interacts with viruses to make one sick, and it may help to promote the development of more efficient viral vaccines and therapies for persistent infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI109858-01
Application #
8665102
Study Section
Special Emphasis Panel (ZAI1-ZL-I (J1))
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
1
Fiscal Year
2014
Total Cost
$477,701
Indirect Cost
$191,938
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Urban, Stina L; Berg, Leslie J; Welsh, Raymond M (2016) Type 1 interferon licenses naïve CD8 T cells to mediate anti-viral cytotoxicity. Virology 493:52-9
Bautista, Bianca L; Devarajan, Priyadharshini; McKinstry, K Kai et al. (2016) Short-Lived Antigen Recognition but Not Viral Infection at a Defined Checkpoint Programs Effector CD4 T Cells To Become Protective Memory. J Immunol 197:3936-3949
Stadinski, Brian D; Shekhar, Karthik; Gómez-Touriño, Iria et al. (2016) Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol 17:946-55
Zhou, Xin; Hopkins, Jacob W; Wang, Chongkai et al. (2016) IL-2 and IL-6 cooperate to enhance the generation of influenza-specific CD8 T cells responding to live influenza virus in aged mice and humans. Oncotarget 7:39171-39183
Stadinski, Brian D; Obst, Reinhard; Huseby, Eric S (2016) A "hotspot" for autoimmune T cells in type 1 diabetes. J Clin Invest 126:2040-2
Fonseca, Jairo Andres; Cabrera-Mora, Monica; Singh, Balwan et al. (2016) A chimeric protein-based malaria vaccine candidate induces robust T cell responses against Plasmodium vivax MSP119. Sci Rep 6:34527
Che, Jenny W; Daniels, Keith A; Selin, Liisa K et al. (2016) Heterologous immunity and persistent murine cytomegalovirus infection. J Virol :
Strutt, Tara M; McKinstry, Karl Kai; Kuang, Yi et al. (2016) Direct IL-6 Signals Maximize Protective Secondary CD4 T Cell Responses against Influenza. J Immunol 197:3260-3270
Wyss, Lena; Stadinski, Brian D; King, Carolyn G et al. (2016) Affinity for self antigen selects Treg cells with distinct functional properties. Nat Immunol 17:1093-101
Devarajan, Priyadharshini; Bautista, Bianca; Vong, Allen M et al. (2016) New Insights into the Generation of CD4 Memory May Shape Future Vaccine Strategies for Influenza. Front Immunol 7:136

Showing the most recent 10 out of 29 publications