Core B will provide a variety of IVIHC and TCR reagents, and will perform experiments using these reagents, in support of the research projects. Routine services that will be provided include production of purified recombinant MHC and TCR proteins for tetramer staining and affinity measurements, testing and quality control of tetramer reagents, biophysical measurements of MHC-peptide and MHC-TCR binding affinity and kinetics, and structural characterization of MHC-peptide complexes. This core will also be partly developmental. Developmental services that will be provided include production of MHC heterodimers for characterization of T cell cross reactivity, and creation of improved reagents for analyzing class ll-restricted CD4 T cells based on current understanding of MHC II peptide interactions.
The specific aims of this work are to generate bifunctional MHC dimers to detect cross-reactive T cells, to develop class II MHC tetrarner technology for l-A(b), to measure binding affinity and kinetics for MHC-TCR pairs, and to provide class I MHC tetramer reagents not available from the NIH tetramer facility. Services provided by core B will be used by Project 1 (Swain), Project 2 (Welsh), Project 3 (Tsuda), and Project 4 (Selin), and also by Core C (Huseby),

Public Health Relevance

The MHC and TCR core facility (Core B) will provide centralized protein biochemistry and biophysics services for the research groups studying the immunological aspects of the CD4+ response to viruses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI109858-01
Application #
8665108
Study Section
Special Emphasis Panel (ZAI1-ZL-I (J1))
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
1
Fiscal Year
2014
Total Cost
$159,233
Indirect Cost
$63,979
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Marshall, Nikki B; Vong, Allen M; Devarajan, Priyadharshini et al. (2017) NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. J Immunol 198:1142-1155
Shin, Hyun Mu; Kapoor, Varun N; Kim, Gwanghun et al. (2017) Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory. PLoS Pathog 13:e1006544
Song, InYoung; Gil, Anna; Mishra, Rabinarayan et al. (2017) Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8+ T cell epitope. Nat Struct Mol Biol 24:395-406
Che, Jenny W; Daniels, Keith A; Selin, Liisa K et al. (2017) Heterologous Immunity and Persistent Murine Cytomegalovirus Infection. J Virol 91:
Watkin, Levi B; Mishra, Rabinarayan; Gil, Anna et al. (2017) Unique influenza A cross-reactive memory CD8 T-cell receptor repertoire has a potential to protect against EBV seroconversion. J Allergy Clin Immunol 140:1206-1210
Aslan, Nuray; Watkin, Levi B; Gil, Anna et al. (2017) Severity of Acute Infectious Mononucleosis Correlates with Cross-Reactive Influenza CD8 T-Cell Receptor Repertoires. MBio 8:
Antunes, Dinler A; Rigo, Maurício M; Freitas, Martiela V et al. (2017) Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy. Front Immunol 8:1210
Blevins, Sydney; Huseby, Eric S (2017) Killer T cells with a beta-flavi(r) for dengue. Nat Immunol 18:1186-1188
Zhou, Xin; Hopkins, Jacob W; Wang, Chongkai et al. (2016) IL-2 and IL-6 cooperate to enhance the generation of influenza-specific CD8 T cells responding to live influenza virus in aged mice and humans. Oncotarget 7:39171-39183
Urban, Stina L; Berg, Leslie J; Welsh, Raymond M (2016) Type 1 interferon licenses naïve CD8 T cells to mediate anti-viral cytotoxicity. Virology 493:52-9

Showing the most recent 10 out of 36 publications