The purpose of this project is to study how the Fc portion of anti-influenza antibodies regulates host immunity during virus infection. The specific activity within the Fc of IgG molecules is determined by both protein sequence and the specific saccharide components within an N-linked, complex, biantennary glycan that exists on all IgG Fes. The titer of neutralizing antibodies present in host serum is the major correlate of protection against influenza virus infection. Historically, neutralizing antibodies have been defined as those that bind the globular head of the viral hemagglutinin (HA), thereby blocking attachment to host cells. More recently, the definition has been expanded to include antibodies that bind the highly conserved stalk domain of the HA and prevent viral entry by blocking fusion with the host cell. We have recently shown that the Fc portion of influenza-specific antibodies can be a critical determinant of the concentration at which antibodies gain neutralizing activity against influenza viruses. The first two aims of this study are designed as a detailed investigation into the role of Fc-FcR engagement in broad-spectrum neutralization of influenza viruses. We will study the role and mechanisms of FcR mediated effector pathways in protection conferred through both anti-HA and anti-neuraminidase (NA) antibodies.
The final aim of our study will investigate the role of the Fc glycan in human immunity against influenza viruses. The IgG Fc glycan is a powerful regulator of antibody effector function and its specific saccharide composition can determine whether an antibody has pro- or anti-inflammatory activity in vivo. It has been observed in mice and in humans that exposure to novel immunogens results in various modifications of IgG glycans;however, little is known about how this process is regulated or the biological consequences of such modifications. Our studies, to be conducted with human samples, are designed to address three fundamental questions related to Fc glycosylation as a determinant of immunity against influenza viruses: 1) does influenza virus vaccination induce a change in glycan composition, particularly in sialylation or fucosylation of flu specific IgG Fes in humans, 2) do the route of exposure and age of the patient affect patterns of post-vaccination Fc glycosylation , and 3) how does Fc glycosylation regulate immunity against influenza viruses in in vitro and in vivo models of infection?

Public Health Relevance

Influenza viruses remain a formidable global health concern. Through the studies proposed in this project we will investigate mechanisms by which antibodies neutralize influenza viruses. These studies will inform on the design of protective antibodies for use as therapeutics and the development of novel vaccines and vaccination protocols.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-ZL-I (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Icahn School of Medicine at Mount Sinai
New York
United States
Zip Code
Wohlbold, Teddy John; Krammer, Florian (2014) In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Viruses 6:2465-94
Ellebedy, Ali H; Krammer, Florian; Li, Gui-Mei et al. (2014) Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proc Natl Acad Sci U S A 111:13133-8
Tan, Gene S; Lee, Peter S; Hoffman, Ryan M B et al. (2014) Characterization of a broadly neutralizing monoclonal antibody that targets the fusion domain of group 2 influenza A virus hemagglutinin. J Virol 88:13580-92
Nachbagauer, Raffael; Wohlbold, Teddy John; Hirsh, Ariana et al. (2014) Induction of broadly reactive anti-hemagglutinin stalk antibodies by an H5N1 vaccine in humans. J Virol 88:13260-8