Parasitic diseases impose a tremendous toll on the global public health. Malaria causes up to 1.24 million deaths every year, while human filariasis remains a major cause of disability in the developing world. We propose to focus on two of the most important causative agents of parasitic disease in the world, the apicomplexan blood parasite Plasmodium falciparum, and the filarial nematode Brugia malayi, which causes lymphatic filariasis. We hypothesize that genomic variation in natural parasite populations and measurable interactions between host, parasites, and the microbiome can be exploited to develop novel strategies for control, treatment, and prevention of malaria and filariasis. The recent emergence and possible spread of artemisinin-resistant falciparum malaria in Southeast Asia threatens to derail malaria elimination efforts, and extensive genetic variation in natural populations of P. falciparum poses a major obstacle to the development of highly efficacious malaria vaccines. To provide new tools for surveillance and containment of drugresistant malaria, we will investigate the genetic basis of reduced susceptibility of P. falciparum to artemisinin antimalarial drugs. We will also identify loci in host and parasite genomes associated with protective naturally acquired immunity to P. falciparum in an effort to establish immune correlates of protection that can inform vaccine development. The characterization of genetic variation in parasite populations at sites where a whole organism vaccine will be tested represents a needed step toward the development of a broadly efficacious malaria vaccine. A new third generation long read sequencing platform will be applied for the first time to sequence and assemble malaria genomes using isolates collected in separately funded field studies. For filariasis, doxycycline is a promising new treatment that can target the adult worms, but more treatment alternatives are needed. We will identify novel filarial drug targets using genome and transcriptome data and examine their functionality and essentiality with RNAi. Because malnutrition is often co-endemic with filariasis, we will also examine the metabolic, transcriptomic, and microbiome response of infected animals kept on micronutrient deficient diets. Genomics, epidemiology, and fundamental research will be integrated in all of these endeavors to improve our understanding of the determinants of disease outcomes and facilitate the development of new tools for the control and elimination of malaria and filariasis.

Public Health Relevance

The goal of the proposed work in this application is to advance the development of new tools for the treatment, control, and eradication of malaria and filariasis. To this end, we will use genomic technologies to examine key issues related to these diseases, namely drug resistance, vaccine escape, immune response, drug discovery, and nutrition.

Agency
National Institute of Health (NIH)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI110820-01
Application #
8711914
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Maryland Baltimore
Department
Type
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Sistrunk, Jeticia R; Nickerson, Kourtney P; Chanin, Rachael B et al. (2016) Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin Microbiol Rev 29:819-36
Chibucos, Marcus C; Soliman, Sameh; Gebremariam, Teclegiorgis et al. (2016) An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nat Commun 7:12218
Conti, Heather R; Bruno, Vincent M; Childs, Erin E et al. (2016) IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis. Cell Host Microbe 20:606-617
Hazen, Tracy H; Leonard, Susan R; Lampel, Keith A et al. (2016) Investigating the Relatedness of Enteroinvasive Escherichia coli to Other E. coli and Shigella Isolates by Using Comparative Genomics. Infect Immun 84:2362-71
Kumar, Nikhil; Lin, Mingqun; Zhao, Xuechu et al. (2016) Efficient Enrichment of Bacterial mRNA from Host-Bacteria Total RNA Samples. Sci Rep 6:34850
Takala-Harrison, Shannon; Jacob, Christopher G; Arze, Cesar et al. (2015) Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis 211:670-9
Ouattara, Amed; Barry, Alyssa E; Dutta, Sheetij et al. (2015) Designing malaria vaccines to circumvent antigen variability. Vaccine 33:7506-12
Bruno, Vincent M; Shetty, Amol C; Yano, Junko et al. (2015) Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome. MBio 6:
Hazen, Tracy H; Kaper, James B; Nataro, James P et al. (2015) Comparative Genomics Provides Insight into the Diversity of the Attaching and Effacing Escherichia coli Virulence Plasmids. Infect Immun 83:4103-17
Sahl, Jason W; Sistrunk, Jeticia R; Fraser, Claire M et al. (2015) Examination of the Enterotoxigenic Escherichia coli Population Structure during Human Infection. MBio 6:e00501

Showing the most recent 10 out of 20 publications