? Project 1, Ravetch Flaviviruses, such as dengue, Zika, and West Nile have a significant impact on public health with tremendous socioeconomic consequences for a large fraction of the world's population. A feature common to all flaviviruses is the clear distinction between infection and disease. For example, only a small fraction of dengue-infected individuals develops dengue disease, which is characterized by a diverse spectrum of clinical symptoms of variable severity. A large body of epidemiological data suggests that prior flavivirus infection represents the major risk factor for dengue disease susceptibility. Indeed, susceptibility to severe dengue disease is associated with the titers of cross-reactive, non-neutralizing IgG antibodies that are elicited during primary infection with other flaviviruses. The established mechanistic model by which IgG antibodies contribute to disease susceptibility is based upon the in vitro observation that these antibodies mediate infection of leukocytes through increased uptake of virus-IgG complexes via specific interactions of their Fc domains with Fc? receptors (Fc?Rs); a phenomenon termed antibody-dependent enhancement (ADE) of infection. Although this model can sufficiently explain susceptibility to dengue disease, it is likely that complex host susceptibility factors exist that contribute to disease pathogenesis and determine severity among symptomatic dengue patients. Consistent with this hypothesis, our recent analysis of the Fc domain structure of IgG antibodies derived from dengue patients with variable disease severity revealed that specific Fc domain characteristics that confer increased affinity for pro- inflammatory, activating Fc?Rs, are enriched in patients with severe disease and evidence for specific clinical manifestations, including thrombocytopenia and vascular leakage. These antibodies exacerbate disease severity by inducing platelet depletion via Fc?R-mediated mechanisms, suggesting that previously-uncharacterized ADE mechanisms contribute to disease pathology. Understanding the mechanisms that mediate dengue ADE is essential for predicting the susceptibility to severe dengue disease in high-risk patient groups and developing approaches to prevent or reduce disease-associated clinical manifestations. In the proposed studies, we will analyze the IgG responses from cohorts of dengue-infected patients with variable disease severity to identify the specific IgG features that are associated with dengue disease severity and clinical manifestations. Follow-up mechanistic studies in mouse models of dengue disease using strains fully humanized for all classes of Fc?Rs will be performed to determine the role of specific human Fc?Rs in dengue disease and characterize the precise Fc?R pathways that contribute to disease pathogenesis. Lastly, we will characterize IgG responses elicited upon influenza vaccination of individuals with differential susceptibility to severe flavivirus infection to determine whether changes in the Fc domain structure represent immune determinants for predicting disease susceptibility. Our studies will provide novel insights into the mechanisms by which pathogenic IgG antibodies mediate dengue disease and have a broader impact on our understanding of the pathogenesis of other flaviviruses, like Zika.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
2U19AI111825-06
Application #
9674739
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
6
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Rockefeller University
Department
Type
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Keeffe, Jennifer R; Van Rompay, Koen K A; Olsen, Priscilla C et al. (2018) A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates. Cell Rep 25:1385-1394.e7
Wu, Xianfang; Dao Thi, Viet Loan; Huang, Yumin et al. (2018) Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell 172:423-438.e25
Hernandez, Nicholas; Melki, Isabelle; Jing, Huie et al. (2018) Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med 215:2567-2585
Rosenberg, Brad R; Freije, Catherine A; Imanaka, Naoko et al. (2018) Genetic Variation at IFNL4 Influences Extrahepatic Interferon-Stimulated Gene Expression in Chronic HCV Patients. J Infect Dis 217:650-655
Wang, Taia T; Bournazos, Stylianos; Ravetch, Jeffrey V (2018) Immunological responses to influenza vaccination: lessons for improving vaccine efficacy. Curr Opin Immunol 53:124-129
Kenney, Adam D; Dowdle, James A; Bozzacco, Leonia et al. (2017) Human Genetic Determinants of Viral Diseases. Annu Rev Genet 51:241-263
Bournazos, Stylianos; Ravetch, Jeffrey V (2017) Fc? Receptor Function and the Design of Vaccination Strategies. Immunity 47:224-233
Robbiani, Davide F; Bozzacco, Leonia; Keeffe, Jennifer R et al. (2017) Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell 169:597-609.e11
Wang, Taia T; Sewatanon, Jaturong; Memoli, Matthew J et al. (2017) IgG antibodies to dengue enhanced for Fc?RIIIA binding determine disease severity. Science 355:395-398
Maamary, Jad; Wang, Taia T; Tan, Gene S et al. (2017) Increasing the breadth and potency of response to the seasonal influenza virus vaccine by immune complex immunization. Proc Natl Acad Sci U S A 114:10172-10177

Showing the most recent 10 out of 21 publications